Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(12): e22826, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38076092

RESUMO

Infections with COVID-19 in enclosed public spaces, where virus-laden aerosol particles can accumulate over time, have significantly contributed to the rapid spread of the virus. It is therefore of great importance to understand the transport and dispersion process of aerosol particles in such spaces, especially against the background of future pandemics. In this work, we present a Lagrangian-Particle-Tracking experiment to assess the mixed convective flow in a classroom with different ventilation strategies. For this purpose, thermal plumes were created by heated dummies, and a collimated LED light-sheet with ∼0.4 m thickness was used for illumination of helium filled soap bubbles (HFSB) acting as passive tracer particles. In this way, the Lagrangian trajectories of the particles were recorded at two approximately 4.2 m × 2.8 m large fields using the novel 2D-Shake-The-Box-Method. As a result, time-resolved trajectories of over 300,000 simultaneously tracked HFSB have been reconstructed, so that both small-scale and large-scale properties of the flow are visualized quantitatively across the entire cross-section of the room. The trajectories show that the thermal plumes create lengthwise circulating vortices, which cannot be destroyed across the entire cross-section of the room by opening or tilting a window. Furthermore, the mixing in the room through the operation of an air purifier is higher compared to opening a window, which suggests that this strategy in combination with its air filtering capability is the most effective strategy to prevent infections.

2.
Sci Rep ; 13(1): 10929, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37414852

RESUMO

When a round jet impinges on a convex cylindrical surface, complex three-dimensional (3D) flow structures occur, accompanied by the Coanda effect. To characterize the flow and turbulence properties of the general system, ensemble averages of 3D Lagrangian particle tracking velocimetry measurements were taken. The radial bin-averaging method was used in post-processing the tracked particles and corresponding instantaneous velocity vectors to generate appropriate ensemble-averaged statistics. Two impinging angles were selected, and at a fixed Reynolds number, the ensemble-averaged volumetric velocity field and turbulent stress tensor components were measured. The flow and turbulence characteristics of the impinging jet on the cylinder were notably different based on the impinging angle, especially in the downstream region. Surprisingly, the attached wall jet with a half-elliptic shape was abruptly thickened in the wall-normal direction, similar to the axis switching phenomenon observed in elliptic jets in the case of oblique impingement. In the jet-impinging region, the flow spread in all directions with high mean vorticity values. With the development of a 3D curved wall jet, both the Coanda effect and centrifugal force played a significant role in the flow behavior. A notable feature of the self-preserving region was the similarity of mean velocity profiles with scaling by the maximum velocity and the jet half-width for both impinging angle cases. Local isotropy of turbulent normal stresses was observed in this region, supporting the existence of self-preservation in the 3D curved wall jet. The volumetric ensemble-averaged Reynolds stress tensor revealed strong inhomogeneous turbulence in the boundary layer region and the curvature effect on the Reynolds shear stress in the free shear layer.


Assuntos
Reologia , Reologia/métodos , Estresse Mecânico
3.
J R Soc Interface ; 12(108): 20150119, 2015 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-26040598

RESUMO

Particle image velocimetry has been the preferred experimental technique with which to study the aerodynamics of animal flight for over a decade. In that time, hardware has become more accessible and the software has progressed from the acquisition of planes through the flow field to the reconstruction of small volumetric measurements. Until now, it has not been possible to capture large volumes that incorporate the full wavelength of the aerodynamic track left behind during a complete wingbeat cycle. Here, we use a unique apparatus to acquire the first instantaneous wake volume of a flying animal's entire wingbeat. We confirm the presence of wake deformation behind desert locusts and quantify the effect of that deformation on estimates of aerodynamic force and the efficiency of lift generation. We present previously undescribed vortex wake phenomena, including entrainment around the wing-tip vortices of a set of secondary vortices borne of Kelvin-Helmholtz instability in the shear layer behind the flapping wings.


Assuntos
Voo Animal/fisiologia , Gafanhotos/fisiologia , Modelos Biológicos , Asas de Animais/fisiologia , Animais , Reologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...