Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Water Res ; 206: 117750, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34678696

RESUMO

Assessing the transport and reactive processes of contaminants in freshwater streams is crucial in managing water resources sustainably. Particularly the hyporheic zone, the sediment-water interface where surface water and groundwater mix, may possess significant contaminant removal capacities due to its myriad physical, chemical, and microbiological processes. However, modelling approaches aiming at assessing the hyporheic zone's reactivity are either based on simple assumptions, such as, predefining the shape of the residence times distribution (RTD) function, or are computationally not feasible due to a too detailed system characterisation. In addition, parent-daughter reactions of contaminants are barely investigated. The present study introduces a numerical modelling framework for assessing hyporheic reactions of contaminant transformation reactions based on a non-parametric residence time approach combined with multiple sorption models and first-order removal reactions. The proposed framework uses natural electrical conductivity fluctuations to determine conservative transport properties and is demonstrated by interpreting time series of hyporheic point measurements of trace organic compounds, such as pharmaceuticals, and their transformation products using two commonly-used sorption models, namely the simple retardation and the first-order kinetic sorption model. The developed approach gives similar reaction rate coefficient estimates for all contaminants considered for both sorption models tested. The findings highlight that (i) the accurate shape of the RTD is most certainly important for reactive parameter determination and (ii) the daughter reaction rate coefficient may be underestimated if its parent transformation is ignored. The model provides reactive parameter estimates of contaminant transformation reactions with high parameter identifiability and informs which specific parent-daughter-pathway has occurred.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Compostos Orgânicos , Rios , Movimentos da Água
3.
Sci Rep ; 11(1): 13034, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34158517

RESUMO

Urban streams receive increasing loads of organic micropollutants from treated wastewaters. A comprehensive understanding of the in-stream fate of micropollutants is thus of high interest for water quality management. Bedforms induce pumping effects considerably contributing to whole stream hyporheic exchange and are hotspots of biogeochemical turnover processes. However, little is known about the transformation of micropollutants in such structures. In the present study, we set up recirculating flumes to examine the transformation of a set of micropollutants along single flowpaths in two triangular bedforms. We sampled porewater from four locations in the bedforms over 78 days and analysed the resulting concentration curves using the results of a hydrodynamic model in combination with a reactive transport model accounting for advection, dispersion, first-order removal and retardation. The four porewater sampling locations were positioned on individual flowpaths with median solute travel times ranging from 11.5 to 43.3 h as shown in a hydrodynamic model previously. Highest stability was estimated for hydrochlorothiazide on all flowpaths. Lowest detectable half-lives were estimated for sotalol (0.7 h) and sitagliptin (0.2 h) along the shortest flowpath. Also, venlafaxine, acesulfame, bezafibrate, irbesartan, valsartan, ibuprofen and naproxen displayed lower half-lives at shorter flowpaths in the first bedform. However, the behavior of many compounds in the second bedform deviated from expectations, where particularly transformation products, e.g. valsartan acid, showed high concentrations. Flowpath-specific behavior as observed for metformin or flume-specific behavior as observed for metoprolol acid, for instance, was attributed to potential small-scale or flume-scale heterogeneity of microbial community compositions, respectively. The results of the study indicate that the shallow hyporheic flow field and the small-scale heterogeneity of the microbial community are major controlling factors for the transformation of relevant micropollutants in river sediments.

4.
Environ Sci Technol ; 53(8): 4224-4234, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30905154

RESUMO

The fate of 28 trace organic compounds (TrOCs) was investigated in the hyporheic zone (HZ) of an urban lowland river in Berlin, Germany. Water samples were collected hourly over 17 h in the river and in three depths in the HZ using minipoint samplers. The four relatively variable time series were subsequently used to calculate first-order removal rates and retardation coefficients via a one-dimensional reactive transport model. Reversible sorption processes led to substantial retardation of many TrOCs along the investigated hyporheic flow path. Some TrOCs, such as dihydroxy-carbamazepine, O-desmethylvenlafaxine, and venlafaxine, were found to be stable in the HZ. Others were readily removed with half-lives in the first 10 cm of the HZ ranging from 0.1 ± 0.01 h for iopromide to 3.3 ± 0.3 h for tramadol. Removal rate constants of the majority of reactive TrOCs were highest in the first 10 cm of the HZ, where removal of biodegradable dissolved organic matter was also the highest. Because conditions were oxic along the top 30 cm of the investigated flow path, we attribute this finding to the high microbial activity typically associated with the shallow HZ. Frequent and short vertical hyporheic exchange flows could therefore be more important for reach-scale TrOC removal than long, lateral hyporheic flow paths.


Assuntos
Carbono , Rios , Berlim , Alemanha , Compostos Orgânicos
5.
Environ Sci Technol ; 52(21): 12285-12294, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30293423

RESUMO

First-order half-lives for 26 trace organic compounds (TrOCs) were determined in the hyporheic zone (HZ) and along a 3 km reach of a first-order stream in South Australia during both dry and wet seasons. Two salt tracer experiments were conducted and evaluated using a transient storage model to characterize seasonal differences in stream residence time and transient storage. Lagrangian and time-integrated surface water sampling were conducted to calculate half-lives in the surface water. Half-lives in the HZ were calculated using porewater samples obtained from a modified mini-point sampler and hyporheic residence times measured via active heat-pulse sensing. Half of the investigated TrOCs (e.g., oxazepam, olmesartan, candesartan) were not significantly removed along both the investigated river stretch and the sampled hyporheic flow paths. The remaining TrOCs (e.g., metformin, guanylurea, valsartan) were found to be significantly removed in the HZ and along the river stretch with relative removals in the HZ correlating to reach-scale relative removals. Using the modeled transport parameters, it was estimated that wet season reach-scale removal of TrOCs was predominately caused by removal in the HZ when the intensity of hyporheic exchange was also higher. Factors that increase HZ exchange are thus likely to promote in-stream reactivity of TrOCs.


Assuntos
Água Subterrânea , Compostos Orgânicos , Rios , Estações do Ano , Austrália do Sul
6.
Environ Sci Process Impacts ; 20(12): 1716-1727, 2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-30350841

RESUMO

Hyporheic zones (HZs) are dynamic and complex transition regions between rivers and aquifers which are thought to play an important role in the attenuation of environmental micropollutants. Non-steady state and small-scale hyporheic processes which affect micropollutants in the HZ are poorly characterized due to limitations in existing analytical methodologies. In this work we developed a method for high spatio-temporal resolution analysis of polar organic micropollutants (POMs) in hyporheic pore- and surface waters by combining (semi-) automatic low volume sampling techniques with direct-injection ultra-high performance liquid chromatography tandem mass spectrometry. The method is capable of quantifying 25 parent compounds and 18 transformation products (TPs) using only 0.4 mL of water and few preparation steps. Application of the method to both surface and pore water revealed significant (i.e. > an order of magnitude) differences in POM concentrations over small time and spatial scales (i.e. < a few hours and tens of cm, respectively). Guanylurea, a TP of the antidiabetic drug metformin was detected at unprecedentedly high concentrations. Collectively, this method is suitable for in situ characterization of POMs at high spatial and temporal resolution and with minimal disturbance of natural flow paths and infiltration of surface water.


Assuntos
Monitoramento Ambiental/métodos , Água Subterrânea/química , Rios/química , Poluentes Químicos da Água/análise , Cromatografia Líquida de Alta Pressão , Alemanha , Análise Espaço-Temporal , Espectrometria de Massas em Tandem
7.
Water Res ; 140: 158-166, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29705619

RESUMO

The hyporheic zone (HZ) is often considered to efficiently remove polar trace organic compounds (TrOCs) from lotic systems, mitigating potential adverse effects of TrOCs on ecosystem functioning and drinking water production. Predicting the fate of TrOCs in the hyporheic zone (HZ) is difficult as the in-situ removal rate constants are not known and the biogeochemical factors as well as hydrological conditions controlling the removal efficiency are not fully understood. To determine the in-situ removal efficiency of the HZ for a variety of TrOCs as a function of the biogeochemical milieu, we conducted a field study in an urban river near Berlin, Germany. Subsurface flow was studied by time series of temperature depth profiles and the biogeochemical milieu of the HZ by concentration depth profiles. These results, in conjunction with a 1D advection-dispersion transport model, were used to calculate first-order removal rate constants of several polar TrOCs in the HZ. For the majority of TrOCs investigated, removal rate constants were strongly dependent on redox conditions, with significantly higher removal rates observed under predominantly suboxic (i.e. denitrifying) compared to anoxic (i.e. Fe and Mn reducing) conditions. Compared to previous studies on the fate of TrOCs in saturated sediments, half-lives within oxic/suboxic sections of the HZ were relatively low, attributable to the site-specific characteristics of the HZ in a stream dominated by wastewater treatment plant effluent. For nine out of thirteen investigated TrOCs, concentrations decreased significantly in the HZ with relative removal percentages ranging from 32% for primidone to 77% for gabapentin. For many TrOCs, removal efficiency decreased drastically as redox conditions became anoxic. For the majority of compounds investigated here, the HZ indeed acts as an efficient bioreactor that is capable of removing TrOCs along relatively short flow paths. Depending on the TrOC, removal capacity may be enhanced by either increasing the magnitude of groundwater-surface exchange fluxes, by increasing the total residence time in the HZ or the exposure time to suboxic zones, respectively.


Assuntos
Compostos Orgânicos/análise , Rios/química , Poluentes Químicos da Água/análise , Berlim , Desnitrificação , Água Subterrânea/química , Meia-Vida , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...