Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Chem ; 6(1): 233, 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37898644

RESUMO

Flexible metal-organic frameworks (MOFs) can undergo structural transitions with significant pore volume changes upon guest adsorption or other external triggers while maintaining their porosity. In computational studies of this breathing behavior, molecular dynamics (MD) simulations within periodic boundary conditions (PBCs) are commonly performed. However, to account for the finite size and surface effects affecting the phase transition mechanism, the simulation of non-periodic nanocrystallite (NC) models without the constraint of PBCs is an important alternative. In this study, we present an approach allowing the analysis and control of the volume of finite-size structures during MD simulations by a tetrahedral tessellation of the (deformed) NC's volume. The method allows for defining the current NC's volume during the simulation and manipulating it regarding a particular reference volume to compute free energies for the phase transformation via umbrella sampling. The application on differently sized DMOF-1 and DUT-128 NCs reveals flexible pore closing mechanisms without significant biasing of the transition pathway. The concept provides the theoretical foundation for further research on flexible materials regarding targeted initialization of the structural phase behavior to elucidate the underlying mechanism, which can be used to improve the applications of flexible materials by targeted controlling of the phase transition.

2.
Angew Chem Int Ed Engl ; 62(33): e202218076, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37052183

RESUMO

Flexible porous frameworks are at the forefront of materials research. A unique feature is their ability to open and close their pores in an adaptive manner induced by chemical and physical stimuli. Such enzyme-like selective recognition offers a wide range of functions ranging from gas storage and separation to sensing, actuation, mechanical energy storage and catalysis. However, the factors affecting switchability are poorly understood. In particular, the role of building blocks, as well as secondary factors (crystal size, defects, cooperativity) and the role of host-guest interactions, profit from systematic investigations of an idealized model by advanced analytical techniques and simulations. The review describes an integrated approach targeting the deliberate design of pillared layer metal-organic frameworks as idealized model materials for the analysis of critical factors affecting framework dynamics and summarizes the resulting progress in their understanding and application.

3.
Front Chem ; 9: 757680, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34760871

RESUMO

One of the most investigated properties of porous crystalline metal-organic frameworks (MOFs) is their potential flexibility to undergo large changes in unit cell size upon guest adsorption or other stimuli, referred to as "breathing". Computationally, such phase transitions are usually investigated using periodic boundary conditions, where the system's volume can be controlled directly. However, we have recently shown that important aspects like the formation of a moving interface between the open and the closed pore form or the free energy barrier of the first-order phase transition and its size effects can best be investigated using non-periodic nanocrystallite (NC) models [Keupp et al. (Adv. Theory Simul., 2019, 2, 1900117)]. In this case, the application of pressure is not straightforward, and a distance constraint was used to mimic a mechanical strain enforcing the reaction coordinate. In contrast to this prior work, a mediating particle bath is used here to exert an isotropic hydrostatic pressure on the MOF nanocrystallites. The approach is inspired by the mercury nanoporosimetry used to compress flexible MOF powders. For such a mediating medium, parameters are presented that require a reasonable additional numerical effort and avoid unwanted diffusion of bath particles into the MOF pores. As a proof-of-concept, NCs of pillared-layer MOFs with different linkers and sizes are studied concerning their response to external pressure exerted by the bath. By this approach, an isotropic pressure on the NC can be applied in analogy to corresponding periodic simulations, without any bias for a specific mechanism. This allows a more realistic investigation of the breathing phase transformation of a MOF NC and further bridges the gap between experiment and simulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...