Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
2.
Environ Entomol ; 53(3): 406-416, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38555565

RESUMO

Termite hindguts are inhabited by symbionts that help with numerous processes, but changes in the gut microbiome due to season can potentially impact the physiology of termites. This study investigated the impact of seasonal changes on the composition of bacteria and protozoa in the termite gut. Termites were obtained monthly from May to October 2020 at a location in the central United States that typically experiences seasonal air temperatures ranging from < 0 to > 30 °C. The guts of 10 termites per biological replication were dissected and frozen within 1 day after collections. DNA was extracted from the frozen gut tissues and used for termite 16S rRNA mitochondrial gene analysis and bacterial 16S rRNA gene sequence surveys. Phylogenetic analysis of termite 16S rRNA gene sequences verified that the same colony was sampled across all time points. On processing bacterial 16S sequences, we observed alpha (observed features, Pielou's evenness, and Shannon diversity) and beta diversity (unweighted Unifrac, Bray-Curtis, and Jaccard) metrics to vary significantly across months. Based on the analysis of the composition of microbiomes with bias correction (ANCOM-BC) at the genus level, we found several significant bacterial taxa over collection months. In addition, Spearman correlation analysis demonstrated that 41 bacterial taxa were significantly correlated (positively and negatively) with average soil temperature. These results from a single termite colony suggest termite microbial communities go through seasonal changes in relative abundance related to temperature, although other seasonal effects cannot be excluded. Further investigations are required to conclusively define the consistency of microbial variation among different colonies with season.


Assuntos
Bactérias , Microbioma Gastrointestinal , Isópteros , RNA Ribossômico 16S , Estações do Ano , Animais , Isópteros/microbiologia , RNA Ribossômico 16S/análise , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação
3.
Curr Opin Insect Sci ; 62: 101161, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38237732

RESUMO

Insecticide resistance is an evolved ability to survive insecticide exposure. Compared with nonsocial insects, eusocial insects have lower numbers of documented cases of resistance. Eusocial insects include beneficial and pest species that can be incidentally or purposely targeted with insecticides. The central goal of this review is to explore factors that either limit resistance or the ability to detect it in eusocial insects. We surveyed the literature and found that resistance has been documented in bees, but in other pest groups such as ants and termites, the evidence is more sparse. We suggest the path forward for better understanding eusocial resistance should include more tractable experimental models, comprehensive geographic sampling, and targeted testing of the impacts of social, symbiont, genetic, and ecological factors.


Assuntos
Formigas , Inseticidas , Isópteros , Abelhas , Animais , Resistência a Inseticidas , Insetos , Inseticidas/farmacologia
4.
Environ Pollut ; 337: 122527, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37699451

RESUMO

Whiteflies are important insect pests in a wide variety of agricultural crops that are targeted with large quantities of insecticides on a global scale. Chemical control is the most common strategy to manage whiteflies, however, recent studies had reported that whiteflies and other hemipterans can excrete insecticides through their honeydew, which could have unanticipated, non-target effects. The objective of this study was to determine the concentration of imidacloprid in honeydew excreted by whiteflies feeding on tomato plants. Imidacloprid was applied at its labeled rate to soil at the base of whitefly-infested plants. Densities of whiteflies were assessed before insecticide treatment and 21 days after treatment (DAT). Honeydew was collected in Petri dishes from 1 to 4 DAT and from 5 to 8 DAT. The volume of the honeydew was calculated using stereo microscopy and then rinsed with ethanol. The rinsates were analyzed to determine imidacloprid concentration using liquid chromatography coupled to mass spectrometry. Honeydew production was further quantified by using water sensitive papers. Imidacloprid reduced densities of nymph and adult whiteflies by 81.5% and 76.0% compared to the control at 21DAT. The non-metabolized parent compound imidacloprid was detected from honeydew samples at both collection dates. At 1-4 DAT, imidacloprid concentrations were 180 ng/30 mL in a volume of 39 mm3 of honeydew. At 5-8 DAT, the imidacloprid concentration was 218 ng/30 mL in a volume of 25 mm3 of honeydew. Though the volume of honeydew decreased, the concentration of imidacloprid numerically increased. Last, whiteflies were still producing honeydew 22 DAT in both treatments. These results revealing significant imidacloprid concentrations in honeydew suggest a strong potential for negative secondary impacts on beneficial insects.


Assuntos
Hemípteros , Inseticidas , Solanum lycopersicum , Animais , Inseticidas/farmacologia , Neonicotinoides , Nitrocompostos , Insetos
5.
Front Microbiol ; 14: 1102523, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37025631

RESUMO

Background: Soil-derived prokaryotic gut communities of the Japanese beetle Popillia japonica Newman (JB) larval gut include heterotrophic, ammonia-oxidizing, and methanogenic microbes potentially capable of promoting greenhouse gas (GHG) emissions. However, no research has directly explored GHG emissions or the eukaryotic microbiota associated with the larval gut of this invasive species. In particular, fungi are frequently associated with the insect gut where they produce digestive enzymes and aid in nutrient acquisition. Using a series of laboratory and field experiments, this study aimed to (1) assess the impact of JB larvae on soil GHG emissions; (2) characterize gut mycobiota associated with these larvae; and (3) examine how soil biological and physicochemical characteristics influence variation in both GHG emissions and the composition of larval gut mycobiota. Methods: Manipulative laboratory experiments consisted of microcosms containing increasing densities of JB larvae alone or in clean (uninfested) soil. Field experiments included 10 locations across Indiana and Wisconsin where gas samples from soils, as well as JB and their associated soil were collected to analyze soil GHG emissions, and mycobiota (ITS survey), respectively. Results: In laboratory trials, emission rates of CO2, CH4, and N2O from infested soil were ≥ 6.3× higher per larva than emissions from JB larvae alone whereas CO2 emission rates from soils previously infested by JB larvae were 1.3× higher than emissions from JB larvae alone. In the field, JB larval density was a significant predictor of CO2 emissions from infested soils, and both CO2 and CH4 emissions were higher in previously infested soils. We found that geographic location had the greatest influence on variation in larval gut mycobiota, although the effects of compartment (i.e., soil, midgut and hindgut) were also significant. There was substantial overlap in the composition and prevalence of the core fungal mycobiota across compartments with prominent fungal taxa being associated with cellulose degradation and prokaryotic methane production/consumption. Soil physicochemical characteristics such as organic matter, cation exchange capacity, sand, and water holding capacity, were also correlated with both soil GHG emission, and fungal a-diversity within the JB larval gut. Conclusions: Results indicate JB larvae promote GHG emissions from the soil directly through metabolic activities, and indirectly by creating soil conditions that favor GHG-associated microbial activity. Fungal communities associated with the JB larval gut are primarily influenced by adaptation to local soils, with many prominent members of that consortium potentially contributing to C and N transformations capable of influencing GHG emissions from infested soil.

6.
J Med Entomol ; 60(2): 356-363, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36691833

RESUMO

The German cockroach, Blattella germanica (L.), is one of the most critical urban pests globally due to the health risks it imposes on people, such as asthma. Insecticides are known to manage large cockroach population sizes, but the rapid rate at which they develop resistance is a continuing problem. Dealing with insecticide resistance can be expensive and time-consuming for both the consumer and the pest management professional (PMP) applying the treatment. Each cockroach population is unique because different strains have different insecticide susceptibilities, so resistance profiles must be considered. This study addressed the above issue in a controlled laboratory setting. Cockroach strains from Indianapolis, Indiana, Danville, Illinois, and Baltimore, Maryland, USA were used. Four insecticide active ingredients (AIs) most used by consumers and PMPs were selected for testing in vial bioassays to establish resistance profiles. Next, no-choice and choice feeding assays with four currently registered bait products were performed to assess the impacts of competing food and circadian rhythms on bait resistance levels. The results indicate that emamectin benzoate (Optigard) was the most effective AI in causing the highest mortality in all strains in vial and no-choice bioassays; whereas, the other AIs and products were more impacted by resistance. The results acquired from these studies can help develop rapid tests for use by PMPs based on the no-choice feeding assay while also adding more information supporting current resistance and cross-resistance evolution theories.


Assuntos
Blattellidae , Inseticidas , Animais , Inseticidas/farmacologia , Resistência a Inseticidas , Controle de Insetos/métodos , Bioensaio , Alérgenos
7.
Pestic Biochem Physiol ; 188: 105234, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36464351

RESUMO

The German cockroach (Blattella germanica L.) is a major urban pest worldwide and is notorious for its ability to detoxify and resist insecticides. German cockroaches have generalist feeding habits that expose them to a range of potential hazardous substances and host a wide variety of unique microbial species, which may potentially facilitate unique detoxification capabilities. Since field German cockroach populations are routinely exposed to both bait and spray insecticide treatments, we hypothesized whether these unique gut microbes might play roles in toxicological processes of the host insect. The goals of this research were to understand the metabolic processes inside the German cockroach gut after treatment with kanamycin, a broad-ranging antibiotic, and indoxacarb, an oxadiazine pro-insecticide used in cockroach bait products. In these experiments, two resistant cockroach strains were obtained from field populations in Danville, IL and compared to a susceptible laboratory strain that had no previous exposure to insecticides (J-wax). Roaches provided kanamycin-infused water had lower median mortality to indoxacarb compared to the control treatment in feeding bioassays regardless of strain, but in vial (surface contact) bioassays, only susceptible cockroaches experienced a shift in mortality apparently due to their greater susceptibility. When frass extracts of indoxacarb-fed cockroaches were analyzed, less of the active, hydrolytic metabolite DCJW (N-decarbomethoxyllated JW062) was produced relative to the parent compound indoxacarb with the antibiotic KAN. This result was further corroborated by hydrolase activity assays of whole homogenized cockroach guts. Taken together these results provide novel evidence of microbe-mediated pro-insecticide activation in the cockroach gut.


Assuntos
Blattellidae , Inseticidas , Animais , Inseticidas/farmacologia , Canamicina , Antibacterianos
8.
Arch Insect Biochem Physiol ; 111(2): e21918, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35650514

RESUMO

Tergal glands are found in many insect species and contain constituents such as pheromones, sugars, proteins, and so forth. Preliminary studies have revealed that tergal gland secretions in the German cockroach (Blattella germanica L.) contain the human allergen Bla g 2 (B. germanica allergen 2), an inactive aspartic protease. Although Bla g 2 protein expression has been detected previously in various German cockroach body parts, including male tergal glands, studies that link protein expression in various life stages and tissues with mRNA and protein abundance have not been conducted. Therefore, the goal of this study was to measure the relative abundances of Bla g 2 protein and mRNA in different tissues and life stages of B. germanica using immunoblotting, quantitative PCR, and liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based quantitative profiling. We found that Bla g 2 protein was detected in every sampled tissue, including the male tergal glands. Protein abundance was relatively high in adult males and their tergal glands in comparison to nymphs and virgin females. Similarly, Bla g 2 mRNA transcript levels were also comparatively higher in male tergal glands and adult males. In conclusion, this study provides new information on the relative abundance and distribution of Bla g 2 allergen, a medically significant protein, in different tissues and developmental stages of the German cockroach and lays the foundation for future studies that aim to determine the function of this protein in B. germanica development.


Assuntos
Alérgenos , Blattellidae , Alérgenos/genética , Alérgenos/metabolismo , Animais , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/metabolismo , Blattellidae/genética , Blattellidae/metabolismo , Cromatografia Líquida , Feminino , Masculino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espectrometria de Massas em Tandem
9.
Pestic Biochem Physiol ; 184: 105123, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35715061

RESUMO

Despite insecticide resistance issues, pyrethroids and fipronil have continued to be used extensively to control the German cockroach, Blattella germanica (L.) (Blattodea: Ectobiidae) for more than two decades. We evaluated the physiological insecticide resistance in five German cockroach populations collected from 2018 to 2020 and measured the extent of metabolic detoxification and target-site insensitivity resistance mechanisms. Topically applied doses of the 3 x LD95 of deltamethrin, fipronil, DDT, or dieldrin of a susceptible strain (UCR, Diagnostic Dose) failed to cause >23% mortality, and the 10 x LD95 of deltamethrin or fipronil failed to cause >53% mortality. All field-collected strains possessed a combination of metabolic and target-site insensitivity mechanisms that cause reduced susceptibility. Elevated activities of esterase and glutathione S-transferase were measured, and the synergists piperonyl butoxide or S,S,S-tributyl phosphorotrithioate increased topical mortality up to 100% for deltamethrin and 93% for fipronil 10 x LD95. The target-site mutations L993F of the para-homologous sodium channel and A302S of the GABA-gated chloride channel associated with pyrethroid and fipronil resistance, respectively, were found at ~80-100% frequency in field populations. Pyrethroid and fipronil spray formulations also were ineffective in a choice box assay against field-collected strains suggesting that these treatments would fail to control cockroaches under field conditions.


Assuntos
Blattellidae , Baratas , Inseticidas , Piretrinas , Animais , Resistência a Inseticidas , Inseticidas/farmacologia , Nitrilas , Pirazóis , Piretrinas/farmacologia
10.
Front Microbiol ; 13: 854513, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35572692

RESUMO

Invasive scarab beetles, like the Japanese beetle Popillia japonica Newman (JB), spend most of their lives as larvae feeding in the soil matrix. Despite the potential importance of the larval gut microbial community in driving the behavior, physiology, and nutritional ecology of this invasive insect, the role of soil biological and physicochemical characteristics in shaping this community are relatively unknown. Our objectives were to (1) characterize the degree to which larval gut microbial communities are environmentally acquired, (2) examine the combined effects of the gut region (i.e., midgut, hindgut) and local soil environments on gut microbial communities, and (3) search for soil physicochemical correlates that could be useful in future studies aimed at characterizing gut microbial community variation in soil-dwelling scarabs. Gut communities from neonates that were never in contact with the soil were different from gut communities of third instar larvae collected from the field, with neonate gut communities being significantly less rich and diverse. The influence of compartment (soil, midgut, or hindgut) on prokaryotic α- and ß-diversity varied with location, suggesting that JB larval gut communities are at least partially shaped by the local environment even though the influence of compartment was more pronounced. Midgut microbiota contained transient communities that varied with the surrounding soil environment whereas hindgut microbiota was more conserved. Prokaryotic communities in the hindgut clustered separately from those of soil and midgut, which displayed greater interspersion in ordination space. Soil cation exchange capacity, organic matter, water holding capacity, and texture were moderately correlated (≥29%) with gut prokaryotic microbial composition, especially within the midgut. Findings suggest that microbial communities associated with the JB gut are partially a function of adaptation to local soil environments. However, conditions within each gut compartment appear to shape those communities in transit through the alimentary canal.

11.
Pest Manag Sci ; 78(1): 205-216, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34468070

RESUMO

BACKGROUND: Heat can be effective for bed bug elimination. However, in some cases bed bugs survive heat treatments. The objectives of this study were to determine the behavioral responses of bed bugs to rising harborage temperatures (23.0-49.0 °C) and identify which heat shock protein (HSP) genes are expressed after heat exposure. First, a custom-made copper arena and harborage were used to determine the escape behaviors of six bed bug populations. Next, HSP gene expression responses of select populations were determined after heat exposure using real time quantitative polymerase chain reaction (RT-qPCR). RESULTS: Analysis of the 25 min behavioral experiment data found that harborage top temperatures associated with 25%, 50% and 75% probabilities of bed bugs to flee the harborage did not differ significantly between populations. Also, the percentage of insects that escaped from heated areas and survived (4.0-12.0%) was not different between populations. However, when specific temperatures at which successful escapes occurred were statistically compared, the Poultry House population was found to flee the harborage at statistically higher temperatures (43.6 ± 0.5 °C) than others (40.5 ± 0.6-42.0 ± 0.7 °C). The RT-qPCR experiments revealed that the HSP70.1, HSP70.3, and Putative Small HSP genes were significantly up-regulated 15 min, 2, and 4 h post-heat exposure and decreased back to baseline levels by 24 h. CONCLUSIONS: This study shows that when harborage top temperatures approach 40.0-43.0 °C, bed bugs will disperse in search for cooler areas. This work implicates the HSP70.1, HSP70.3, and Putative Small HSP genes in heat induced stress recovery of bed bugs. © 2021 Society of Chemical Industry.


Assuntos
Percevejos-de-Cama , Ectoparasitoses , Animais , Percevejos-de-Cama/genética , Expressão Gênica , Proteínas de Choque Térmico/genética , Temperatura Alta
12.
Sci Rep ; 11(1): 24196, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34921232

RESUMO

The German cockroach (Blattella germanica L.) is a major urban pest worldwide and is known for its ability to resist insecticides. Past research has shown that gut bacteria in other insects can metabolize xenobiotics, allowing the host to develop resistance. The research presented here determined differences in gut microbial composition between insecticide-resistant and susceptible German cockroaches and compared microbiome changes with antibiotic treatment. Cockroaches received either control diet or diet plus kanamycin (KAN) to quantify shifts in microbial composition. Additionally, both resistant and susceptible strains were challenged with diets containing the insecticides abamectin and fipronil in the presence and absence of antibiotic. In both strains, KAN treatment reduced feeding, leading to higher doses of abamectin and fipronil being tolerated. However, LC50 resistance ratios between resistant and susceptible strains decreased by half with KAN treatment, suggesting gut bacteria mediate resistance. Next, whole guts were isolated, bacterial DNA extracted, and 16S MiSeq was performed. Unlike most bacterial taxa, Stenotrophomonas increased in abundance in only the kanamycin-treated resistant strain and was the most indicative genus in classifying between control and kanamycin-treated cockroach guts. These findings provide unique insights into how the gut microbiome responds to stress and disturbance, and important new insights into microbiome-mediated insecticide resistance.


Assuntos
Antibacterianos/farmacologia , Inseticidas/farmacologia , Ivermectina/análogos & derivados , Pirazóis/farmacologia , Animais , Blattellidae , DNA Bacteriano/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Resistência a Inseticidas , Ivermectina/farmacologia , Canamicina/farmacologia
14.
Insects ; 12(10)2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34680721

RESUMO

Sitophilus oryzae is one of the most destructive pests of stored grains. It leads to significant quantitative and qualitative losses, resulting in food and income insecurity among farmers. Chemical pesticides are the most common methods used by farmers and other grain value chain actors to manage this pest. However, pesticides are increasingly becoming unattractive for pest control due to health hazards posed to applicators, consumers, the environment, and insect resistance. Modified atmospheres have the potential to manage stored insect pests as an alternative to pesticides. There is limited understanding of when insect pests die when grain is stored in airtight containers. This experiment was conducted to assess the time required to reach mortality of adult S. oryzae when exposed to 1, 3, and 5% oxygen levels. Results revealed that the LT50 for 1, 3, and 5% of oxygen were reached after 69.7 h, 187.8 h, and 386.6 h of exposure, respectively. No adult emergence was observed on infested grains following exposure to 1 and 3% oxygen levels. This result provides vital rationale for storing grain in hermetic storage conditions for at least 39 days to achieve adult S. oryzae mortality and minimize grain reinfestation.

15.
J Exp Biol ; 224(19)2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34515310

RESUMO

Termites are eusocial insects that host a range of prokaryotic and eukaryotic gut symbionts and can differentiate into a range of caste phenotypes. Soldier caste differentiation from termite workers follows two successive molts (worker-presoldier-soldier) that are driven at the endocrine level by juvenile hormone (JH). Although physiological and eusocial mechanisms tied to JH signaling have been studied, the role of gut symbionts in the caste differentiation process is poorly understood. Here, we used the JH analog methoprene in combination with the antibiotic kanamycin to manipulate caste differentiation and gut bacterial loads in Reticulitermes flavipes termites via four bioassay treatments: kanamycin, methoprene, kanamycin+methoprene, and an untreated (negative) control. Bioassay results demonstrated a significantly higher number of presoldiers in the methoprene treatment, highest mortality in kanamycin+methoprene treatment, and significantly reduced protist numbers in all treatments except the untreated control. Bacterial 16S rRNA gene sequencing provided alpha and beta diversity results that mirrored bioassay findings. From ANCOM analysis, we found that several bacterial genera were differentially abundant among treatments. Finally, follow-up experiments showed that if methoprene and kanamycin or untreated termites are placed together, zero or rescued presoldier initiation, respectively, occurs. These findings reveal that endogenous JH selects for symbiont compositions required to successfully complete presoldier differentiation. However, if the gut is voided before the influx of JH, it cannot select for the necessary symbionts that are crucial for molting. Based on these results, we are able to provide a novel example of linkages between gut microbial communities and host phenotypic plasticity.


Assuntos
Isópteros , Adaptação Fisiológica , Animais , Humanos , Isópteros/genética , Hormônios Juvenis , Muda , RNA Ribossômico 16S/genética
16.
Pestic Biochem Physiol ; 175: 104829, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33993977

RESUMO

Plant essential oils (EOs) are secondary metabolites derived from aromatic plants that are composed of complex mixtures of chemical constituents. EOs have been proposed as one of the alternative methods for bed bug (Cimex lectularius L.) control. In insecticide resistant mosquitoes and tobacco cutworm, EOs synergize pyrethroid toxicity by inhibiting detoxification enzymes. However, whether EOs and their constituents enhance pyrethroid toxicity in C. lectularius has remained unknown. Therefore, this study was designed to (i) determine the effects of binary mixtures of deltamethrin (a pyrethroid insecticide) with EOs or EO constituents or EcoRaider® (an EO-based product) on mortality of insecticide resistant and susceptible bed bugs, and (ii) evaluate the effects of EO constituent pre-treatment on detoxification enzyme activities of resistant and susceptible populations. Topical bioassays with binary mixtures of deltamethrin and individual EOs (e.g., thyme, oregano, clove, geranium or coriander oils) or their major constituents (e.g., thymol, carvacrol, eugenol, geraniol or linalool) or EcoRaider® at doses that kill approximately 25% of bed bugs caused significant increases in mortality of resistant bed bugs. However, in the susceptible population, only coriander oil, EcoRaider®, thymol, and carvacrol significantly increased the toxicity of deltamethrin. Detoxification enzyme assays with protein extracts from bed bugs pre-treated with EO constituents suggested selective inhibition of cytochrome P450 activity in the resistant population, but no impacts were observed on esterase and glutathione transferase activities in either population. Inhibition of P450 activity by EO constituents thus appears to be one of the mechanisms of deltamethrin toxicity enhancement in resistant bed bugs.


Assuntos
Percevejos-de-Cama , Inseticidas , Óleos Voláteis , Piretrinas , Animais , Sistema Enzimático do Citocromo P-450 , Resistência a Inseticidas , Inseticidas/toxicidade , Nitrilas , Óleos Voláteis/toxicidade , Piretrinas/toxicidade
17.
Annu Rev Entomol ; 66: 23-43, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33417825

RESUMO

Termites have long been studied for their symbiotic associations with gut microbes. In the late nineteenth century, this relationship was poorly understood and captured the interest of parasitologists such as Joseph Leidy; this research led to that of twentieth-century biologists and entomologists including Cleveland, Hungate, Trager, and Lüscher. Early insights came via microscopy, organismal, and defaunation studies, which led to descriptions of microbes present, descriptions of the roles of symbionts in lignocellulose digestion, and early insights into energy gas utilization by the host termite. Focus then progressed to culture-dependent microbiology and biochemical studies of host-symbiont complementarity, which revealed specific microhabitat requirements for symbionts and noncellulosic mechanisms of symbiosis (e.g., N2 fixation). Today, knowledge on termite symbiosis has accrued exponentially thanks to omic technologies that reveal symbiont identities, functions, and interdependence, as well as intricacies of host-symbiont complementarity. Moving forward, the merging of classical twentieth-century approaches with evolving omic tools should provide even deeper insights into host-symbiont interplay.


Assuntos
Entomologia/história , Isópteros/parasitologia , Microbiota , Simbiose , Animais , Genômica , História do Século XIX , História do Século XX , História do Século XXI , Isópteros/genética , Isópteros/microbiologia
18.
Front Physiol ; 12: 816675, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35185605

RESUMO

Cockroaches are important global urban pests from aesthetic and health perspectives. Insecticides represent the most cost-effective way to control cockroaches and limit their impacts on human health. However, cockroaches readily develop insecticide resistance, which can quickly limit efficacy of even the newest and most effective insecticide products. The goal of this research was to understand whole-body physiological responses in German cockroaches, at the metatranscriptome level, to defined insecticide selection pressures. We used the insecticide indoxacarb as the selecting insecticide, which is an important bait active ingredient for cockroach control. Six generations of selection with indoxacarb bait produced a strain with substantial (>20×) resistance relative to inbred control lines originating from the same parental stock. Metatranscriptome sequencing revealed 1,123 significantly differentially expressed (DE) genes in ≥two of three statistical models (81 upregulated and 1,042 downregulated; FDR P < 0.001; log2FC of ±1). Upregulated DE genes represented many detoxification enzyme families including cytochrome-P450 oxidative enzymes, hydrolases and glutathione-S-transferases. Interestingly, the majority of downregulated DE genes were from microbial and viral origins, indicating that selection for resistance is also associated with elimination of commensal, pathogenic and/or parasitic microbes. These microbial impacts could result from: (i) direct effects of indoxacarb, (ii) indirect effects of antimicrobial preservatives included in the selecting bait matrix, or (iii) selection for general stress response mechanisms that confer both xenobiotic resistance and immunity. These results provide novel physiological insights into insecticide resistance evolution and mechanisms, as well as novel insights into parallel fitness benefits associated with selection for insecticide resistance.

19.
Sci Rep ; 10(1): 14490, 2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32879347

RESUMO

The long-term decline of monarch butterflies has been attributed to loss of their milkweed (Asclepias sp.) host-plants after the introduction of herbicide-tolerant crops. However, recent studies report pesticide residues on milkweed leaves that could act as a contributing factor when ingested as part of their larval diet. In this study, we exposed monarch larvae to six pesticides (insecticide: clothianidin; herbicides: atrazine, S-metolachlor; fungicides: azoxystrobin, pyraclostrobin, trifloxystrobin) on their primary host-plant, A. syriaca. Each was tested at mean and maximum levels reported from published analyses of milkweeds bordering cropland and thus represent field-relevant concentrations. Monarch lethal and sub-lethal responses were tracked over their complete development, from early instar larvae to adult death. Overall, we found no impact of any pesticide on immature development time and relatively weak effects on larval herbivory or survival to adulthood. Comparatively stronger effects were detected for adult performance; namely, a 12.5% reduction in wing length in response to the fungicides azoxystrobin and trifloxystrobin. These data collectively suggest that monarch responses to host-plant pesticides are largely sublethal and more pronounced in the adult stage, despite exposure only as larvae. This outcome has important implications for risk assessment and the migratory success of monarchs in North America.


Assuntos
Borboletas/efeitos dos fármacos , Herbicidas/toxicidade , Larva/efeitos dos fármacos , Praguicidas/toxicidade , Acetamidas/toxicidade , Acetatos/toxicidade , Migração Animal , Animais , Asclepias , Atrazina/toxicidade , Ecossistema , Fungicidas Industriais/toxicidade , Herbivoria , Iminas/toxicidade , Dinâmica Populacional , Pirimidinas/toxicidade , Medição de Risco , Estrobilurinas/toxicidade
20.
Curr Opin Insect Sci ; 41: 79-85, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32823202

RESUMO

Termites are fascinating insects for a number of reasons, one of which being their specialization on diets of wood lignocellulose. The goal of this review is to consider stress-inducing characteristics of wood and apparent molecular-physiological adaptations in termite guts to overcome these stressors. Defensive factors present in wood include extractive secondary plant metabolites, lignin and related phenolics, crystalline cellulose, and low nitrogen content. Molecular-physiological adaptations of the termite gut to deal with these factors include robust detoxification and antioxidant machinery, the production of a peritrophic matrix and a wide range of cellulases from host and symbiotic sources, and creation of niches available to nitrogen-fixing bacterial symbionts. Considering termite gut physiology and symbioses in the context of stress-response has applied implications. These outcomes can include development of efficient biomass breakdown strategies, protection of microbes during industrial processing applications, and safeguarding wooden structures from termite damage.


Assuntos
Isópteros/microbiologia , Isópteros/fisiologia , Madeira/química , Animais , Microbioma Gastrointestinal/fisiologia , Trato Gastrointestinal/fisiologia , Isópteros/metabolismo , Lignina/metabolismo , Simbiose , Madeira/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...