Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Talanta ; 203: 242-247, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31202333

RESUMO

Wastewater treatment plants are the main release sources of pharmaceutical compounds present in surface waters. Even at low concentrations, many of these substances have long-term adverse effects on the environment. For an efficient control of pharmaceutical removal, a real-time recognition is a prerequisite. Currently, quantification of such compounds is done in special equipped laboratories and is rather time-consuming and expensive. Here, we introduce a novel biosensor for the detection of the pharmaceutical compound diclofenac, which can be produced with low costs, is easy in handling and can be applied directly on-site. Recognition of diclofenac is based on genetically engineered yeast cells which produce green fluorescent protein in a diclofenac concentration-dependent manner. Centerpiece of the sensor is a foil-based microfluidic flow cell, which allows supply with nutrient solution and analyte while preventing loss of reporter cells. Readout of data is accomplished by a newly developed spectrometric detection unit. With this device, we are able to determine diclofenac concentrations in a range from 10 to 50 µM.


Assuntos
Diclofenaco/análise , Águas Residuárias/análise , Poluentes Químicos da Água/análise , Técnicas Biossensoriais/métodos , Diclofenaco/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...