Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Trends Biochem Sci ; 40(6): 318-27, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25941170

RESUMO

Intramembrane proteolysis - cleavage of proteins within the plane of a membrane - is a widespread phenomenon that can contribute to the functional activation of substrates and is involved in several diseases. Although different families of intramembrane proteases have been discovered and characterized, we currently do not know how these enzymes discriminate between substrates and non-substrates, how site-specific cleavage is achieved, or which factors determine the rate of proteolysis. Focusing on γ-secretase and rhomboid proteases, we argue that answers to these questions may emerge from connecting experimental readouts, such as reaction kinetics and the determination of cleavage sites, to the structures and the conformational dynamics of substrates and enzymes.


Assuntos
Proteínas de Membrana/química , Peptídeo Hidrolases/metabolismo , Proteólise , Secretases da Proteína Precursora do Amiloide/química , Membrana Celular/metabolismo , Humanos , Cinética , Proteínas de Membrana/metabolismo , Peptídeo Hidrolases/química
2.
Biophys J ; 77(4): 1839-57, 1999 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-10512807

RESUMO

We performed a theoretical study to elucidate the coupling between protonation states and orientation of protein dipoles and buried water molecules in green fluorescent protein, a versatile biosensor for protein targeting. It is shown that the ionization equilibria of the wild-type green fluorescent protein-fluorophore and the internal proton-binding site E222 are mutually interdependent. Two acid-base transitions of the fluorophore occur in the presence of neutral (physiologic pH) and ionized (pH > 12) E222, respectively. In the pH-range from approximately 8 to approximately 11 ionized and neutral sites are present in constant ratio, linked by internal proton transfer. The results indicate that modulation of the internal proton sharing by structural fluctuations or chemical variations of aligning residues T203 and S65 cause drastic changes of the neutral/anionic ratio-despite similar physiologic fluorophore pK(a) s. Moreover, we find that dipolar heterogeneities in the internal hydrogen-bond network lead to distributed driving forces for excited-state proton transfer. A molecular model for the unrelaxed surrounding after deprotonation is discussed in relation to pathways providing fast ground-state recovery or slow stabilization of the anion. The calculated total free energy for excited-state deprotonation ( approximately 19 k(B)T) and ground-state reprotonation ( approximately 2 k(B)T) is in accordance with absorption and emission data (

Assuntos
Proteínas Luminescentes/química , Proteínas Luminescentes/metabolismo , Prótons , Sítios de Ligação , Proteínas de Fluorescência Verde , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Indicadores e Reagentes/química , Indicadores e Reagentes/metabolismo , Cinética , Luz , Proteínas Luminescentes/genética , Modelos Moleculares , Mutação , Conformação Proteica , Eletricidade Estática , Termodinâmica , Titulometria , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...