Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 23(15): 19771-6, 2015 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-26367634

RESUMO

We demonstrate phase locking of a 729 nm diode laser to a 1542 nm master laser via an erbium-doped-fiber frequency comb, using a transfer-oscillator feedforward scheme which suppresses the effect of comb noise in an unprecedented 1.8 MHz bandwidth. We illustrate its performance by carrying out coherent manipulations of a trapped calcium ion with 99 % fidelity even at few-µs timescales. We thus demonstrate that transfer-oscillator locking can provide sufficient phase stability for high-fidelity quantum logic manipulation even without pre-stabilization of the slave diode laser.

2.
Nat Commun ; 5: 3096, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24477261

RESUMO

Precision spectroscopy of atomic and molecular ions offers a window to new physics, but is typically limited to species with a cycling transition for laser cooling and detection. Quantum logic spectroscopy has overcome this limitation for species with long-lived excited states. Here we extend quantum logic spectroscopy to fast, dipole-allowed transitions and apply it to perform an absolute frequency measurement. We detect the absorption of photons by the spectroscopically investigated ion through the photon recoil imparted on a co-trapped ion of a different species, on which we can perform efficient quantum logic detection techniques. This amplifies the recoil signal from a few absorbed photons to thousands of fluorescence photons. We resolve the line centre of a dipole-allowed transition in (40)Ca(+) to 1/300 of its observed linewidth, rendering this measurement one of the most accurate of a broad transition. The simplicity and versatility of this approach enables spectroscopy of many previously inaccessible species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...