Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Sci Rep ; 14(1): 15948, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987540

RESUMO

In empirical art research, understanding how viewers judge visual artworks as beautiful is often explored through the study of attributes-specific inherent characteristics or artwork features such as color, complexity, and emotional expressiveness. These attributes form the basis for subjective evaluations, including the judgment of beauty. Building on this conceptual framework, our study examines the beauty judgments of 54 Western artworks made by native Japanese and German speakers, utilizing an extreme randomized trees model-a data-driven machine learning approach-to investigate cross-cultural differences in evaluation behavior. Our analysis of 17 attributes revealed that visual harmony, color variety, valence, and complexity significantly influenced beauty judgments across both cultural cohorts. Notably, preferences for complexity diverged significantly: while the native Japanese speakers found simpler artworks as more beautiful, the native German speakers evaluated more complex artworks as more beautiful. Further cultural distinctions were observed: for the native German speakers, emotional expressiveness was a significant factor, whereas for the native Japanese speakers, attributes such as brushwork, color world, and saturation were more impactful. Our findings illuminate the nuanced role that cultural context plays in shaping aesthetic judgments and demonstrate the utility of machine learning in unravelling these complex dynamics. This research not only advances our understanding of how beauty is judged in visual art-considering self-evaluated attributes-across different cultures but also underscores the potential of machine learning to enhance our comprehension of the aesthetic evaluation of visual artworks.


Assuntos
Arte , Beleza , Comparação Transcultural , Julgamento , Aprendizado de Máquina , Humanos , Feminino , Alemanha , Masculino , Japão , Adulto , Adulto Jovem , Estética/psicologia , Emoções , População do Leste Asiático
3.
iScience ; 27(2): 108915, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38318347

RESUMO

The anterior insular cortex, a central node of the salience network, plays a critical role in cognitive control and attention. Here, we investigated the feasibility of enhancing attention using real-time fMRI neurofeedback training that targets the right anterior insular cortex (rAIC). 56 healthy adults underwent two neurofeedback training sessions. The experimental group received feedback from neural responses in the rAIC, while control groups received sham feedback from the primary visual cortex or no feedback. Cognitive functioning was evaluated before, immediately after, and three months post-training. Our results showed that only the rAIC neurofeedback group successfully increased activity in the rAIC. Furthermore, this group showed enhanced attention-related alertness up to three months after the training. Our findings provide evidence for the potential of rAIC neurofeedback as a viable approach for enhancing attention-related alertness, which could pave the way for non-invasive therapeutic strategies to address conditions characterized by attention deficits.

4.
Front Neurosci ; 17: 1229729, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38094001

RESUMO

Introduction: Real-time fMRI-based neurofeedback (rt-fMRI-NFB) is a non-invasive technology that enables individuals to self-regulate brain activity linked to neuropsychiatric symptoms, including those associated with post-traumatic stress disorder (PTSD). Selecting the target brain region for neurofeedback-mediated regulation is primarily informed by the neurobiological characteristics of the participant population. There is a strong link between PTSD symptoms and multiple functional disruptions in the brain, including hyperactivity within both the amygdala and posterior cingulate cortex (PCC) during trauma-related processing. As such, previous rt-fMRI-NFB studies have focused on these two target regions when training individuals with PTSD to regulate neural activity. However, the differential effects of neurofeedback target selection on PTSD-related neural activity and clinical outcomes have not previously been investigated. Methods: Here, we compared whole-brain activation and changes in PTSD symptoms between PTSD participants (n = 28) that trained to downregulate activity within either the amygdala (n = 14) or the PCC (n = 14) while viewing personalized trauma words. Results: For the PCC as compared to the amygdala group, we observed decreased neural activity in several regions implicated in PTSD psychopathology - namely, the bilateral cuneus/precuneus/primary visual cortex, the left superior parietal lobule, the left occipital pole, and the right superior temporal gyrus/temporoparietal junction (TPJ) - during target region downregulation using rt-fMRI-NFB. Conversely, for the amygdala as compared to the PCC group, there were no unique (i.e., over and above that of the PCC group) decreases in neural activity. Importantly, amygdala downregulation was not associated with significantly improved PTSD symptoms, whereas PCC downregulation was associated with reduced reliving and distress symptoms over the course of this single training session. In this pilot analysis, we did not detect significant between-group differences in state PTSD symptoms during neurofeedback. As a critical control, the PCC and amygdala groups did not differ in their ability to downregulate activity within their respective target brain regions. This indicates that subsequent whole-brain neural activation results can be attributed to the effects of the neurofeedback target region selection in terms of neurophysiological function, rather than as a result of group differences in regulatory success. Conclusion: In this study, neurofeedback-mediated downregulation of the PCC was differentially associated with reduced state PTSD symptoms and simultaneous decreases in PTSD-associated brain activity during a single training session. This novel analysis may guide researchers in choosing a neurofeedback target region in future rt-fMRI-NFB studies and help to establish the clinical efficacy of specific neurofeedback targets for PTSD. A future multi-session clinical trial of rt-fMRI-NFB that directly compares between PCC and amygdala target regions is warranted.

5.
Psychol Trauma ; 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38010788

RESUMO

OBJECTIVE: Posttraumatic stress disorder (PTSD) is a debilitating psychiatric illness, experienced by approximately 10% of the population. Heterogeneous presentations that include heightened dissociation, comorbid anxiety and depression, and emotion dysregulation contribute to the severity of PTSD, in turn, creating barriers to recovery. There is an urgent need to use data-driven approaches to better characterize complex psychiatric presentations with the aim of improving treatment outcomes. We sought to determine if machine learning models could predict PTSD-related illness in a real-world treatment-seeking population using self-report clinical data. METHOD: Secondary clinical data from 2017 to 2019 included pretreatment measures such as trauma-related symptoms, other mental health symptoms, functional impairment, and demographic information from adults admitted to an inpatient unit for PTSD in Canada (n = 393). We trained two nonlinear machine learning models (extremely randomized trees) to identify predictors of (a) PTSD symptom severity and (b) functional impairment. We assessed model performance based on predictions in novel subsets of patients. RESULTS: Approximately 43% of the variance in PTSD symptom severity (R²avg = .43, R²median = .44, p = .001) was predicted by symptoms of anxiety, dissociation, depression, negative trauma-related beliefs about others, and emotion dysregulation. In addition, 32% of the variance in functional impairment scores (R²avg = .32, R²median = .33, p = .001) was predicted by anxiety, PTSD symptom severity, cognitive dysfunction, dissociation, and depressive symptoms. CONCLUSIONS: Our results reinforce that dissociation, cooccurring anxiety and depressive symptoms, maladaptive trauma appraisals, cognitive dysfunction, and emotion dysregulation are critical targets for trauma-related interventions. Machine learning models can inform personalized medicine approaches to maximize trauma recovery in real-world inpatient populations. (PsycInfo Database Record (c) 2023 APA, all rights reserved).

6.
Brain Behav ; 13(10): e3217, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37594145

RESUMO

INTRODUCTION: Neurofeedback based on functional magnetic resonance imaging allows for learning voluntary control over one's own brain activity, aiming to enhance cognition and clinical symptoms. We previously reported improved sustained attention temporarily by training healthy participants to up-regulate the differential activity of the sustained attention network minus the default mode network (DMN). However, the long-term brain and behavioral effects of this training have not yet been studied. In general, despite their relevance, long-term learning effects of neurofeedback training remain under-explored. METHODS: Here, we complement our previously reported results by evaluating the neurofeedback training effects on functional networks involved in sustained attention and by assessing behavioral and brain measures before, after, and 2 months after training. The behavioral measures include task as well as questionnaire scores, and the brain measures include activity and connectivity during self-regulation runs without feedback (i.e., transfer runs) and during resting-state runs from 15 healthy individuals. RESULTS: Neurally, we found that participants maintained their ability to control the differential activity during follow-up sessions. Further, exploratory analyses showed that the training increased the functional connectivity between the DMN and the occipital gyrus, which was maintained during follow-up transfer runs but not during follow-up resting-state runs. Behaviorally, we found that enhanced sustained attention right after training returned to baseline level during follow-up. CONCLUSION: The discrepancy between lasting regulation-related brain changes but transient behavioral and resting-state effects raises the question of how neural changes induced by neurofeedback training translate to potential behavioral improvements. Since neurofeedback directly targets brain measures to indirectly improve behavior in the long term, a better understanding of the brain-behavior associations during and after neurofeedback training is needed to develop its full potential as a promising scientific and clinical tool.

7.
Sci Rep ; 13(1): 12966, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563194

RESUMO

Creativity is a compelling yet elusive phenomenon, especially when manifested in visual art, where its evaluation is often a subjective and complex process. Understanding how individuals judge creativity in visual art is a particularly intriguing question. Conventional linear approaches often fail to capture the intricate nature of human behavior underlying such judgments. Therefore, in this study, we employed interpretable machine learning to probe complex associations between 17 subjective art-attributes and creativity judgments across a diverse range of artworks. A cohort of 78 non-art expert participants assessed 54 artworks varying in styles and motifs. The applied Random Forests regressor models accounted for 30% of the variability in creativity judgments given our set of art-attributes. Our analyses revealed symbolism, emotionality, and imaginativeness as the primary attributes influencing creativity judgments. Abstractness, valence, and complexity also had an impact, albeit to a lesser degree. Notably, we observed non-linearity in the relationship between art-attribute scores and creativity judgments, indicating that changes in art-attributes did not consistently correspond to changes in creativity judgments. Employing statistical learning, this investigation presents the first attribute-integrating quantitative model of factors that contribute to creativity judgments in visual art among novice raters. Our research represents a significant stride forward building the groundwork for first causal models for future investigations in art and creativity research and offering implications for diverse practical applications. Beyond enhancing comprehension of the intricate interplay and specificity of attributes used in evaluating creativity, this work introduces machine learning as an innovative approach in the field of subjective judgment.


Assuntos
Pinturas , Humanos , Criatividade , Julgamento , Imaginação
8.
Brain Behav ; 13(3): e2883, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36791212

RESUMO

BACKGROUND: Alterations within large-scale brain networks-namely, the default mode (DMN) and salience networks (SN)-are present among individuals with posttraumatic stress disorder (PTSD). Previous real-time functional magnetic resonance imaging (fMRI) and electroencephalography neurofeedback studies suggest that regulating posterior cingulate cortex (PCC; the primary hub of the posterior DMN) activity may reduce PTSD symptoms and recalibrate altered network dynamics. However, PCC connectivity to the DMN and SN during PCC-targeted fMRI neurofeedback remains unexamined and may help to elucidate neurophysiological mechanisms through which these symptom improvements may occur. METHODS: Using a trauma/emotion provocation paradigm, we investigated psychophysiological interactions over a single session of neurofeedback among PTSD (n = 14) and healthy control (n = 15) participants. We compared PCC functional connectivity between regulate (in which participants downregulated PCC activity) and view (in which participants did not exert regulatory control) conditions across the whole-brain as well as in a priori specified regions-of-interest. RESULTS: During regulate as compared to view conditions, only the PTSD group showed significant PCC connectivity with anterior DMN (dmPFC, vmPFC) and SN (posterior insula) regions, whereas both groups displayed PCC connectivity with other posterior DMN areas (precuneus/cuneus). Additionally, as compared with controls, the PTSD group showed significantly greater PCC connectivity with the SN (amygdala) during regulate as compared to view conditions. Moreover, linear regression analyses revealed that during regulate as compared to view conditions, PCC connectivity to DMN and SN regions was positively correlated to psychiatric symptoms across all participants. CONCLUSION: In summary, observations of PCC connectivity to the DMN and SN provide emerging evidence of neural mechanisms underlying PCC-targeted fMRI neurofeedback among individuals with PTSD. This supports the use of PCC-targeted neurofeedback as a means by which to recalibrate PTSD-associated alterations in neural connectivity within the DMN and SN, which together, may help to facilitate improved emotion regulation abilities in PTSD.


Assuntos
Neocórtex , Neurorretroalimentação , Transtornos de Estresse Pós-Traumáticos , Humanos , Transtornos de Estresse Pós-Traumáticos/diagnóstico por imagem , Transtornos de Estresse Pós-Traumáticos/terapia , Giro do Cíngulo , Neurorretroalimentação/métodos , Imageamento por Ressonância Magnética , Rede de Modo Padrão/patologia , Encéfalo , Tonsila do Cerebelo , Mapeamento Encefálico
9.
Neuroimage Clin ; 37: 103345, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36780835

RESUMO

Resting-state functional connectivity has generated great hopes as a potential brain biomarker for improving prevention, diagnosis, and treatment in psychiatry. This neuroimaging protocol can routinely be performed by patients and does not depend on the specificities of a task. Thus, it seems ideal for big data approaches that require aggregating data across multiple studies and sites. However, technical variability, diverging data analysis approaches, and differences in data acquisition protocols introduce heterogeneity to the aggregated data. Besides these technical aspects, a prior task that changes the psychological state of participants might also contribute to heterogeneity. In healthy participants, studies have shown that behavioral tasks can influence resting-state measures, but such effects have not yet been reported in clinical populations. Here, we fill this knowledge gap by comparing resting-state functional connectivity before and after clinically relevant tasks in two clinical conditions, namely substance use disorders and phobias. The tasks consisted of viewing craving-inducing and spider anxiety provoking pictures that are frequently used in cue-reactivity studies and exposure therapy. We found distinct pre- vs post-task resting-state connectivity differences in each group, as well as decreased thalamo-cortical and increased intra-thalamic connectivity which might be associated with decreased vigilance in both groups. Our results confirm that resting-state measures can be strongly influenced by prior emotion-inducing tasks that need to be taken into account when pooling resting-state scans for clinical biomarker detection. This demands that resting-state datasets should include a complete description of the experimental design, especially when a task preceded data collection.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Neuroimagem , Emoções , Biomarcadores , Descanso , Vias Neurais
10.
PLoS One ; 18(1): e0281196, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36706136

RESUMO

Different aspects of attention can be assessed through psychological tests to identify stable individual or group differences as well as alterations after interventions. Aiming for a wide applicability of attentional assessments, Psychology Experiment Building Language (PEBL) is an open-source software system for designing and running computerized tasks that tax various attentional functions. Here, we evaluated the reliability and validity of computerized attention tasks as provided with the PEBL package: Continuous Performance Task (CPT), Switcher task, Psychomotor Vigilance Task (PVT), Mental Rotation task, and Attentional Network Test. For all tasks, we evaluated test-retest reliability using the intraclass correlation coefficient (ICC), as well as internal consistency through within-test correlations and split-half ICC. Across tasks, response time scores showed adequate reliability, whereas scores of performance accuracy, variability, and deterioration over time did not. Stability across application sites was observed for the CPT and Switcher task, but practice effects were observed for all tasks except the PVT. We substantiate convergent and discriminant validity for several task scores using between-task correlations and provide further evidence for construct validity via associations of task scores with attentional and motivational assessments. Taken together, our results provide necessary information to help design and interpret studies involving attention assessments.


Assuntos
Atenção , Software , Reprodutibilidade dos Testes , Tempo de Reação , Vigília , Testes Neuropsicológicos
11.
Addict Biol ; 28(1): e13261, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36577730

RESUMO

Tobacco smoking is associated with deleterious health outcomes. Most smokers want to quit smoking, yet relapse rates are high. Understanding neural differences associated with tobacco use may help generate novel treatment options. Several animal studies have recently highlighted the central role of the thalamus in substance use disorders, but this research focus has been understudied in human smokers. Here, we investigated associations between structural and functional magnetic resonance imaging measures of the thalamus and its subnuclei to distinct smoking characteristics. We acquired anatomical scans of 32 smokers as well as functional resting-state scans before and after a cue-reactivity task. Thalamic functional connectivity was associated with craving and dependence severity, whereas the volume of the thalamus was associated with dependence severity only. Craving, which fluctuates rapidly, was best characterized by differences in brain function, whereas the rather persistent syndrome of dependence severity was associated with both brain structural differences and function. Our study supports the notion that functional versus structural measures tend to be associated with behavioural measures that evolve at faster versus slower temporal scales, respectively. It confirms the importance of the thalamus to understand mechanisms of addiction and highlights it as a potential target for brain-based interventions to support smoking cessation, such as brain stimulation and neurofeedback.


Assuntos
Abandono do Hábito de Fumar , Tabagismo , Humanos , Tabagismo/diagnóstico por imagem , Fissura/fisiologia , Fumar , Imageamento por Ressonância Magnética , Tálamo/diagnóstico por imagem
12.
Front Neurosci ; 17: 1286665, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38274498

RESUMO

Introduction: Maladaptive functioning of the amygdala has been associated with impaired emotion regulation in affective disorders. Recent advances in real-time fMRI neurofeedback have successfully demonstrated the modulation of amygdala activity in healthy and psychiatric populations. In contrast to an abstract feedback representation applied in standard neurofeedback designs, we proposed a novel neurofeedback paradigm using naturalistic stimuli like human emotional faces as the feedback display where change in the facial expression intensity (from neutral to happy or from fearful to neutral) was coupled with the participant's ongoing bilateral amygdala activity. Methods: The feasibility of this experimental approach was tested on 64 healthy participants who completed a single training session with four neurofeedback runs. Participants were assigned to one of the four experimental groups (n = 16 per group), i.e., happy-up, happy-down, fear-up, fear-down. Depending on the group assignment, they were either instructed to "try to make the face happier" by upregulating (happy-up) or downregulating (happy-down) the amygdala or to "try to make the face less fearful" by upregulating (fear-up) or downregulating (fear-down) the amygdala feedback signal. Results: Linear mixed effect analyses revealed significant amygdala activity changes in the fear condition, specifically in the fear-down group with significant amygdala downregulation in the last two neurofeedback runs as compared to the first run. The happy-up and happy-down groups did not show significant amygdala activity changes over four runs. We did not observe significant improvement in the questionnaire scores and subsequent behavior. Furthermore, task-dependent effective connectivity changes between the amygdala, fusiform face area (FFA), and the medial orbitofrontal cortex (mOFC) were examined using dynamic causal modeling. The effective connectivity between FFA and the amygdala was significantly increased in the happy-up group (facilitatory effect) and decreased in the fear-down group. Notably, the amygdala was downregulated through an inhibitory mechanism mediated by mOFC during the first training run. Discussion: In this feasibility study, we intended to address key neurofeedback processes like naturalistic facial stimuli, participant engagement in the task, bidirectional regulation, task congruence, and their influence on learning success. It demonstrated that such a versatile emotional face feedback paradigm can be tailored to target biased emotion processing in affective disorders.

13.
Commun Biol ; 5(1): 845, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35986202

RESUMO

The dopaminergic midbrain is associated with reinforcement learning, motivation and decision-making - functions often disturbed in neuropsychiatric disorders. Previous research has shown that dopaminergic midbrain activity can be endogenously modulated via neurofeedback. However, the robustness of endogenous modulation, a requirement for clinical translation, is unclear. Here, we examine whether the activation of particular brain regions associates with successful regulation transfer when feedback is no longer available. Moreover, to elucidate mechanisms underlying effective self-regulation, we study the relation of successful transfer with learning (temporal difference coding) outside the midbrain during neurofeedback training and with individual reward sensitivity in a monetary incentive delay (MID) task. Fifty-nine participants underwent neurofeedback training either in standard (Study 1 N = 15, Study 2 N = 28) or control feedback group (Study 1, N = 16). We find that successful self-regulation is associated with prefrontal reward sensitivity in the MID task (N = 25), with a decreasing relation between prefrontal activity and midbrain learning signals during neurofeedback training and with increased activity within cognitive control areas during transfer. The association between midbrain self-regulation and prefrontal temporal difference and reward sensitivity suggests that reinforcement learning contributes to successful self-regulation. Our findings provide insights in the control of midbrain activity and may facilitate individually tailoring neurofeedback training.


Assuntos
Neurorretroalimentação , Autocontrole , Mapeamento Encefálico , Humanos , Individualidade , Imageamento por Ressonância Magnética , Mesencéfalo , Neurorretroalimentação/fisiologia
14.
Addict Biol ; 27(1): e13083, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34363643

RESUMO

Tobacco smoking is one of the leading causes of preventable death and disease worldwide. Most smokers want to quit, but relapse rates are high. To improve current smoking cessation treatments, a better understanding of the underlying mechanisms of nicotine dependence and related craving behaviour is needed. Studies on cue-driven cigarette craving have been a particularly useful tool for investigating the neural mechanisms of drug craving. Here, functional neuroimaging studies in humans have identified a core network of craving-related brain responses to smoking cues that comprises of amygdala, anterior cingulate cortex, orbitofrontal cortex, posterior cingulate cortex and ventral striatum. However, most functional Magnetic Resonance Imaging (fMRI) cue-reactivity studies do not adjust their stimuli for emotional valence, a factor assumed to confound craving-related brain responses to smoking cues. Here, we investigated the influence of emotional valence on key addiction brain areas by disentangling craving- and valence-related brain responses with parametric modulators in 32 smokers. For one of the suggested key regions for addiction, the amygdala, we observed significantly stronger brain responses to the valence aspect of the presented images than to the craving aspect. Our results emphasize the need for carefully selecting stimulus material for cue-reactivity paradigms, in particular with respect to emotional valence. Further, they can help designing future research on teasing apart the diverse psychological dimensions that comprise nicotine dependence and, therefore, can lead to a more precise mapping of craving-associated brain areas, an important step towards more tailored smoking cessation treatments.


Assuntos
Encéfalo/fisiopatologia , Fissura/fisiologia , Sinais (Psicologia) , Abandono do Hábito de Fumar , Fumar/fisiopatologia , Tabagismo/fisiopatologia , Adulto , Comportamento Aditivo/fisiopatologia , Mapeamento Encefálico , Feminino , Neuroimagem Funcional , Giro do Cíngulo/fisiopatologia , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Fumantes/psicologia , Síndrome de Abstinência a Substâncias/fisiopatologia , Adulto Jovem
15.
Brain Behav ; 12(1): e2441, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34921746

RESUMO

BACKGROUND: Intrinsic connectivity networks, including the default mode network (DMN), are frequently disrupted in individuals with posttraumatic stress disorder (PTSD). The posterior cingulate cortex (PCC) is the main hub of the posterior DMN, where the therapeutic regulation of this region with real-time fMRI neurofeedback (NFB) has yet to be explored. METHODS: We investigated PCC downregulation while processing trauma/stressful words over 3 NFB training runs and a transfer run without NFB (total n = 29, PTSD n = 14, healthy controls n = 15). We also examined the predictive accuracy of machine learning models in classifying PTSD versus healthy controls during NFB training. RESULTS: Both the PTSD and healthy control groups demonstrated reduced reliving symptoms in response to trauma/stressful stimuli, where the PTSD group additionally showed reduced symptoms of distress. We found that both groups were able to downregulate the PCC with similar success over NFB training and in the transfer run, although downregulation was associated with unique within-group decreases in activation within the bilateral dmPFC, bilateral postcentral gyrus, right amygdala/hippocampus, cingulate cortex, and bilateral temporal pole/gyri. By contrast, downregulation was associated with increased activation in the right dlPFC among healthy controls as compared to PTSD. During PCC downregulation, right dlPFC activation was negatively correlated to PTSD symptom severity scores and difficulties in emotion regulation. Finally, machine learning algorithms were able to classify PTSD versus healthy participants based on brain activation during NFB training with 80% accuracy. CONCLUSIONS: This is the first study to investigate PCC downregulation with real-time fMRI NFB in both PTSD and healthy controls. Our results reveal acute decreases in symptoms over training and provide converging evidence for EEG-NFB targeting brain networks linked to the PCC.


Assuntos
Neurorretroalimentação , Transtornos de Estresse Pós-Traumáticos , Regulação para Baixo , Giro do Cíngulo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Transtornos de Estresse Pós-Traumáticos/diagnóstico por imagem , Transtornos de Estresse Pós-Traumáticos/terapia
16.
Sci Rep ; 11(1): 23363, 2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34862407

RESUMO

Neurofeedback allows for the self-regulation of brain circuits implicated in specific maladaptive behaviors, leading to persistent changes in brain activity and connectivity. Positive-social emotion regulation neurofeedback enhances emotion regulation capabilities, which is critical for reducing the severity of various psychiatric disorders. Training dorsomedial prefrontal cortex (dmPFC) to exert a top-down influence on bilateral amygdala during positive-social emotion regulation progressively (linearly) modulates connectivity within the trained network and induces positive mood. However, the processes during rest that interleave the neurofeedback training remain poorly understood. We hypothesized that short resting periods at the end of training sessions of positive-social emotion regulation neurofeedback would show alterations within emotion regulation and neurofeedback learning networks. We used complementary model-based and data-driven approaches to assess how resting-state connectivity relates to neurofeedback changes at the end of training sessions. In the experimental group, we found lower progressive dmPFC self-inhibition and an increase of connectivity in networks engaged in emotion regulation, neurofeedback learning, visuospatial processing, and memory. Our findings highlight a large-scale synergy between neurofeedback and resting-state brain activity and connectivity changes within the target network and beyond. This work contributes to our understanding of concomitant learning mechanisms post training and facilitates development of efficient neurofeedback training.


Assuntos
Regulação Emocional/fisiologia , Neurorretroalimentação/métodos , Córtex Pré-Frontal/fisiologia , Descanso/fisiologia , Adulto , Mapeamento Encefálico/métodos , Emoções/fisiologia , Feminino , Voluntários Saudáveis , Humanos , Imageamento por Ressonância Magnética , Masculino , Memória/fisiologia
17.
Front Psychol ; 12: 647956, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34366966

RESUMO

The COVID-19 pandemic along with the restrictions that were introduced within Europe starting in spring 2020 allows for the identification of predictors for relationship quality during unstable and stressful times. The present study began as strict measures were enforced in response to the rising spread of the COVID-19 virus within Austria, Poland, Spain and Czech Republic. Here, we investigated quality of romantic relationships among 313 participants as movement restrictions were implemented and subsequently phased out cross-nationally. Participants completed self-report questionnaires over a period of 7 weeks, where we predicted relationship quality and change in relationship quality using machine learning models that included a variety of potential predictors related to psychological, demographic and environmental variables. On average, our machine learning models predicted 29% (linear models) and 22% (non-linear models) of the variance with regard to relationship quality. Here, the most important predictors consisted of attachment style (anxious attachment being more influential than avoidant), age, and number of conflicts within the relationship. Interestingly, environmental factors such as the local severity of the pandemic did not exert a measurable influence with respect to predicting relationship quality. As opposed to overall relationship quality, the change in relationship quality during lockdown restrictions could not be predicted accurately by our machine learning models when utilizing our selected features. In conclusion, we demonstrate cross-culturally that attachment security is a major predictor of relationship quality during COVID-19 lockdown restrictions, whereas fear, pathogenic threat, sexual behavior, and the severity of governmental regulations did not significantly influence the accuracy of prediction.

18.
J Affect Disord ; 294: 296-304, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34304084

RESUMO

BACKGROUND: Physiological responding is a key characteristic of fear responses. Yet, it is unknown whether the time-consuming measurement of somatovisceral responses ameliorates the prediction of individual fear responses beyond the accuracy reached by the consideration of diagnostic (e.g., phobic vs. non phobic) and cognitive (e.g., risk estimation) factors, which can be more easily assessed. METHOD: We applied a machine learning approach to data of an experiment, in which spider phobic and non-spider fearful participants (diagnostic factor) faced pictures of spiders. For each experimental trial, participants specified their personal risk of encountering the spider (cognitive factor), as well as their subjective fear (outcome variable) on quasi-continuous scales, while diverse somatovisceral responses were registered (heart rate, electrodermal activity, respiration, facial muscle activity). RESULTS: The machine-learning analyses revealed that fear ratings were predominantly predictable by the diagnostic factor. Yet, when allowing for learning of individual patterns in the data, somatovisceral responses contributed additional information on the fear ratings, yielding a prediction accuracy of 81% explained variance. Moreover, heart rate prior to picture onset, but not heart rate reactivity increased predictive power. LIMITATIONS: Fear was solely assessed by verbal reports, only 27 females were considered, and no generalization to other anxiety disorders is possible. CONCLUSIONS: After training the algorithm to learn about individual-specific responding, somatovisceral patterns can be successfully exploited. Our findings further point to the possibility that the expectancy-related autonomic state throughout the experiment predisposes an individual to experience specific levels of fear, with less influence of the actual visual stimulations.


Assuntos
Transtornos Fóbicos , Atenção , Cognição , Medo , Feminino , Humanos , Transtornos Fóbicos/diagnóstico , Estimulação Luminosa
19.
Neuroimage ; 237: 118207, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34048901

RESUMO

Real-time fMRI neurofeedback is an increasingly popular neuroimaging technique that allows an individual to gain control over his/her own brain signals, which can lead to improvements in behavior in healthy participants as well as to improvements of clinical symptoms in patient populations. However, a considerably large ratio of participants undergoing neurofeedback training do not learn to control their own brain signals and, consequently, do not benefit from neurofeedback interventions, which limits clinical efficacy of neurofeedback interventions. As neurofeedback success varies between studies and participants, it is important to identify factors that might influence neurofeedback success. Here, for the first time, we employed a big data machine learning approach to investigate the influence of 20 different design-specific (e.g. activity vs. connectivity feedback), region of interest-specific (e.g. cortical vs. subcortical) and subject-specific factors (e.g. age) on neurofeedback performance and improvement in 608 participants from 28 independent experiments. With a classification accuracy of 60% (considerably different from chance level), we identified two factors that significantly influenced neurofeedback performance: Both the inclusion of a pre-training no-feedback run before neurofeedback training and neurofeedback training of patients as compared to healthy participants were associated with better neurofeedback performance. The positive effect of pre-training no-feedback runs on neurofeedback performance might be due to the familiarization of participants with the neurofeedback setup and the mental imagery task before neurofeedback training runs. Better performance of patients as compared to healthy participants might be driven by higher motivation of patients, higher ranges for the regulation of dysfunctional brain signals, or a more extensive piloting of clinical experimental paradigms. Due to the large heterogeneity of our dataset, these findings likely generalize across neurofeedback studies, thus providing guidance for designing more efficient neurofeedback studies specifically for improving clinical neurofeedback-based interventions. To facilitate the development of data-driven recommendations for specific design details and subpopulations the field would benefit from stronger engagement in open science research practices and data sharing.


Assuntos
Neuroimagem Funcional , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Neurorretroalimentação , Adulto , Humanos
20.
PLoS One ; 16(3): e0247997, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33705439

RESUMO

During medical pandemics, protective behaviors need to be motivated by effective communication, where finding predictors of fear and perceived health is of critical importance. The varying trajectories of the COVID-19 pandemic in different countries afford the opportunity to assess the unique influence of 'macro-level' environmental factors and 'micro-level' psychological variables on both fear and perceived health. Here, we investigate predictors of fear and perceived health using machine learning as lockdown restrictions in response to the COVID-19 pandemic were introduced in Austria, Spain, Poland and Czech Republic. Over a seven-week period, 533 participants completed weekly self-report surveys which measured the target variables subjective fear of the virus and perceived health, in addition to potential predictive variables related to psychological factors, social factors, perceived vulnerability to disease (PVD), and economic circumstances. Viral spread, mortality and governmental responses were further included in the analysis as potential environmental predictors. Results revealed that our models could accurately predict fear of the virus (accounting for approximately 23% of the variance) using predictive factors such as worrying about shortages in food supplies and perceived vulnerability to disease (PVD), where interestingly, environmental factors such as spread of the virus and governmental restrictions did not contribute to this prediction. Furthermore, our results revealed that perceived health could be predicted using PVD, physical exercise, attachment anxiety and age as input features, albeit with smaller effect sizes. Taken together, our results emphasize the importance of 'micro-level' psychological factors, as opposed to 'macro-level' environmental factors, when predicting fear and perceived health, and offer a starting point for more extensive research on the influences of pathogen threat and governmental restrictions on the psychology of fear and health.


Assuntos
Ansiedade/etiologia , COVID-19/epidemiologia , Medo , Adulto , Atitude Frente a Saúde , Feminino , Nível de Saúde , Humanos , Estudos Longitudinais , Aprendizado de Máquina , Masculino , Autorrelato , Isolamento Social , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...