Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Physiol Rep ; 10(5): e15204, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35234346

RESUMO

Women mobilize up to 10% of their bone mass during lactation to provide milk calcium. About 8%-13% of mothers use selective serotonin reuptake inhibitors (SSRI) to treat peripartum depression, but SSRIs independently decrease bone mass. Previously, peripartal use of the SSRI fluoxetine reduced maternal bone mass sustained post-weaning and reduced offspring bone length. To determine whether these effects were fluoxetine-specific or consistent across SSRI compounds, we examined maternal and offspring bone health using the most prescribed SSRI, sertraline. C57BL/6 mice were given 10 mg/kg/day sertraline, from the beginning of pregnancy through the end of lactation. Simultaneously, we treated nulliparous females on the same days as the primiparous groups, resulting in age-matched nulliparous groups. Dams were euthanized at lactation day 10 (peak lactation, n = 7 vehicle; n = 9 sertraline), lactation day 21 (weaning, n = 9 vehicle; n = 9 sertraline), or 3m post-weaning (n = 10 vehicle; n = 10 sertraline) for analysis. Offspring were euthanized at peak lactation or weaning for analysis. We determined that peripartum sertraline treatment decreased maternal circulating calcium concentrations across the treatment period, which was also seen in nulliparous treated females. Sertraline reduced the bone formation marker, procollagen 1 intact N-terminal propeptide, and tended to reduce maternal BV/TV at 3m post-weaning but did not impact maternal or offspring bone health otherwise. Similarly, sertraline did not reduce nulliparous female bone mass. However, sertraline reduced immunofluorescence staining of the tight junction protein, zona occludens in the mammary gland, and altered alveoli morphology, suggesting sertraline may accelerate mammary gland involution. These findings indicate that peripartum sertraline treatment may be a safer SSRI for maternal and offspring bone rather than fluoxetine.


Assuntos
Glândulas Mamárias Humanas , Sertralina , Animais , Cálcio/farmacologia , Feminino , Fluoxetina/farmacologia , Fluoxetina/uso terapêutico , Humanos , Lactação , Camundongos , Camundongos Endogâmicos C57BL , Osteogênese , Gravidez , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Sertralina/farmacologia
2.
PLoS One ; 15(7): e0232564, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32726309

RESUMO

BACKGROUND: The identity and spatial distribution of prostatic cell types has been determined in humans but not in dogs, even though aging- and prostate-related voiding disorders are common in both species and mechanistic factors, such as prostatic collagen accumulation, appear to be shared between species. In this publication we characterize the regional distribution of prostatic cell types in the young intact dog to enable comparisons with human and mice and we examine how the cellular source of procollagen 1A1 changes with age in intact male dogs. METHODS: A multichotomous decision tree involving sequential immunohistochemical stains was validated for use in dog and used to identify specific prostatic cell types and determine their distribution in the capsule, peripheral, periurethral and urethral regions of the young intact canine prostate. Prostatic cells identified using this technique include perivascular smooth muscle cells, pericytes, endothelial cells, luminal, intermediate, and basal epithelial cells, neuroendocrine cells, myofibroblasts, fibroblasts, fibrocytes, and other hematolymphoid cells. To enhance rigor and transparency, all high resolution images (representative images shown in the figures and biological replicates) are available through the GUDMAP database at https://doi.org/10.25548/16-WMM4. RESULTS: The prostatic peripheral region harbors the largest proportion of epithelial cells. Aging does not change the density of hematolymphoid cells, fibroblasts, and myofibroblasts in the peripheral region or in the fibromuscular capsule, regions where we previously observed aging- and androgen-mediated increases in prostatic collagen abundance Instead, we observed aging-related changes the procollagen 1A1 positive prostatic cell identity from a myofibroblast to a fibroblast. CONCLUSIONS: Hematolymphoid cells and myofibroblasts are often identified as sources of collagen in tissues prone to aging-related fibrosis. We show that these are not the likely sources of pathological collagen synthesis in older intact male dogs. Instead, we identify an aging-related shift in the prostatic cell type producing procollagen 1A1 that will help direct development of cell type and prostate appropriate therapeutics for collagen accumulation.


Assuntos
Envelhecimento/fisiologia , Fibroblastos/metabolismo , Miofibroblastos/metabolismo , Pró-Colágeno/biossíntese , Próstata/citologia , Bexiga Urinária/fisiopatologia , Envelhecimento/metabolismo , Envelhecimento/patologia , Animais , Suscetibilidade a Doenças , Cães , Imuno-Histoquímica , Masculino , Próstata/metabolismo , Próstata/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...