Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Neurol Sci ; 43(11): 6271-6278, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35849199

RESUMO

Multiple sclerosis (MS) is a chronic demyelinating autoimmune disease that affects the central nervous system (CNS), varying from relatively benign to severely disabling. Although the roles of several cytokines and chemokines in MS are well established, their roles in MS lesions and evolution remain a matter of debate. Soluble CD40L (sCD40L) is a ligand that induces lymphocyte proinflammatory activity by stimulating the activation and maturation of B cells, promoting isotype switching and affinity hypermutation. Circulating sCD40L levels reflect activation of the CD40-CD40L complex. The interaction between CD40 and CD40L is of fundamental importance, suggesting their role in MS pathogenesis. Interleukin-31 (IL-31) is a proinflammatory cytokine that plays a role in allergies, autoimmune diseases, and is a major factor in several chronic inflammatory diseases. IL-31 triggers the JAK-STAT pathway in several different cell types, to induce proliferation and tissue remodeling in fibroblasts, epithelial cells, and endothelial cells. Some studies have described a correlation between these two cytokines and decreased serum levels of sCD40L and IL-31 after MS treatment, accompanied by a lower inflammatory response. In this review, we emphasize the possible correlation and positive feedback between IL31 and sCD40L in the MS proinflammatory response. We also describe the justification for this hypothesis and whether it is possible to investigate these cytokines as biomarkers of MS.


Assuntos
Ligante de CD40 , Esclerose Múltipla , Humanos , Ligante de CD40/metabolismo , Células Endoteliais/metabolismo , Janus Quinases/metabolismo , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais , Biomarcadores , Interleucinas , Citocinas
2.
Clin Sci (Lond) ; 135(9): 1065-1082, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33960391

RESUMO

Cellular therapy with mesenchymal stem cells (MSCs) is a huge challenge for scientists, as little translational relevance has been achieved. However, many studies using MSCs have proved their suppressive and regenerative capacity. Thus, there is still a need for a better understanding of MSCs biology and the establishment of newer protocols, or to test unexplored tissue sources. Here, we demonstrate that murine endometrial-derived MSCs (meMSCs) suppress Experimental Autoimmune Encephalomyelitis (EAE). MSC-treated animals had milder disease, with a significant reduction in Th1 and Th17 lymphocytes in the lymph nodes and in the central nervous system (CNS). This was associated with increased Il27 and Cyp1a1 expression, and presence of IL-10-secreting T CD4+ cells. At EAE peak, animals had reduced CNS infiltrating cells, histopathology and demyelination. qPCR analysis evidenced the down-regulation of several pro-inflammatory genes and up-regulation of indoleamine-2,3-dioxygenase (IDO). Consistently, co-culturing of WT and IDO-/- meMSCs with T CD4+ cells evidenced the necessity of IDO on the suppression of encephalitogenic lymphocytes, and IDO-/- meMSCs were not able to suppress EAE. In addition, WT meMSCs stimulated with IL-17A and IFN-γ increased IDO expression and secretion of kynurenines in vitro, indicating a negative feedback loop. Pathogenic cytokines were increased when CD4+ T cells from AhR-/- mice were co-cultured with WT meMSC. In summary, our research evidences the suppressive activity of the unexplored meMSCs population, and shows the mechanism depends on IDO-kynurenines-Aryl hydrocarbon receptor (AhR) axis. To our knowledge this is the first report evidencing that the therapeutic potential of meMSCs relying on IDO expression.


Assuntos
Encefalomielite Autoimune Experimental/terapia , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Transplante de Células-Tronco Mesenquimais , Animais , Encefalomielite Autoimune Experimental/enzimologia , Encefalomielite Autoimune Experimental/imunologia , Endométrio/citologia , Feminino , Ativação Linfocitária , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Camundongos Endogâmicos C57BL , Linfócitos T/metabolismo
3.
J Infect Dis ; 222(4): 556-563, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32526012

RESUMO

Patients who died from COVID-19 often had comorbidities, such as hypertension, diabetes, and chronic obstructive lung disease. Although angiotensin-converting enzyme 2 (ACE2) is crucial for SARS-CoV-2 to bind and enter host cells, no study has systematically assessed the ACE2 expression in the lungs of patients with these diseases. Here, we analyzed over 700 lung transcriptome samples from patients with comorbidities associated with severe COVID-19 and found that ACE2 was highly expressed in these patients compared to control individuals. This finding suggests that patients with such comorbidities may have higher chances of developing severe COVID-19. Correlation and network analyses revealed many potential regulators of ACE2 in the human lung, including genes related to histone modifications, such as HAT1, HDAC2, and KDM5B. Our systems biology approach offers a possible explanation for increased COVID-19 severity in patients with certain comorbidities.


Assuntos
Infecções por Coronavirus/epidemiologia , Pulmão/enzimologia , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/epidemiologia , Enzima de Conversão de Angiotensina 2 , COVID-19 , Estudos de Casos e Controles , Transtornos Cerebrovasculares/epidemiologia , Transtornos Cerebrovasculares/genética , Comorbidade , Doença das Coronárias/epidemiologia , Doença das Coronárias/genética , Infecções por Coronavirus/enzimologia , Infecções por Coronavirus/genética , Complicações do Diabetes/epidemiologia , Complicações do Diabetes/genética , Epigenômica , Feminino , Humanos , Hipertensão/epidemiologia , Hipertensão/genética , Masculino , Pandemias , Peptidil Dipeptidase A/genética , Pneumonia Viral/enzimologia , Pneumonia Viral/genética , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Doença Pulmonar Obstrutiva Crônica/genética , Índice de Gravidade de Doença , Biologia de Sistemas , Transcriptoma
4.
J Autoimmun ; 32(2): 94-103, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19181483

RESUMO

Transforming growth factor beta (TGF-beta) plays a role both in the induction of Treg and in the differentiation of the IL-17-secreting T cells (Th17) which drive inflammation in experimental autoimmune encephalomyelitis (EAE). We investigated the role that thrombospondin-1 (TSP-1) dependent activation of TGF-beta played in the generation of an encephalitic Th17 response in EAE. Upon immunization with myelin oligodendrocyte glycoprotein peptide (MOG(35-55)), TSP-1 deficient (TSP-1(null)) mice and MOG(35-55) TCR transgenic mice that lack of TSP-1 (2D2 x TSP-1(null)) exhibited an attenuated form of EAE, and secreted lower levels of IL-17. Adoptive transfer of in vitro-activated 2D2 x TSP-1(null) T cells induced a milder form of EAE, independent of TSP-1 expression in the recipient mice. Furthermore, in vitro studies demonstrated that anti-CD3/anti-CD28 pre-activated CD4+ T cells transiently upregulated latent TGF-beta in a TSP-1 dependent way, and such activation of latent TGF-beta was required for the differentiation of Th17 cells. These results demonstrate that TSP-1 participates in the differentiation of Th17 cells through its ability to activate latent TGF-beta, and enhances the inflammatory response in EAE.


Assuntos
Diferenciação Celular/imunologia , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Interleucina-17/imunologia , Linfócitos T Auxiliares-Indutores/citologia , Linfócitos T Auxiliares-Indutores/imunologia , Trombospondina 1/deficiência , Animais , Células Cultivadas , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/metabolismo , Feminino , Interferon gama/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores de Antígenos de Linfócitos T/imunologia , Trombospondina 1/genética , Trombospondina 1/metabolismo , Fator de Crescimento Transformador beta/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...