Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(19): eadh4053, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38718118

RESUMO

Dynamical systems on hypergraphs can display a rich set of behaviors not observable for systems with pairwise interactions. Given a distributed dynamical system with a putative hypergraph structure, an interesting question is thus how much of this hypergraph structure is actually necessary to faithfully replicate the observed dynamical behavior. To answer this question, we propose a method to determine the minimum order of a hypergraph necessary to approximate the corresponding dynamics accurately. Specifically, we develop a mathematical framework that allows us to determine this order when the type of dynamics is known. We use these ideas in conjunction with a hypergraph neural network to directly learn the dynamics itself and the resulting order of the hypergraph from both synthetic and real datasets consisting of observed system trajectories.

2.
Phys Rev E ; 107(5-1): 054305, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37329032

RESUMO

Modular and hierarchical community structures are pervasive in real-world complex systems. A great deal of effort has gone into trying to detect and study these structures. Important theoretical advances in the detection of modular have included identifying fundamental limits of detectability by formally defining community structure using probabilistic generative models. Detecting hierarchical community structure introduces additional challenges alongside those inherited from community detection. Here we present a theoretical study on hierarchical community structure in networks, which has thus far not received the same rigorous attention. We address the following questions. (1) How should we define a hierarchy of communities? (2) How do we determine if there is sufficient evidence of a hierarchical structure in a network? (3) How can we detect hierarchical structure efficiently? We approach these questions by introducing a definition of hierarchy based on the concept of stochastic externally equitable partitions and their relation to probabilistic models, such as the popular stochastic block model. We enumerate the challenges involved in detecting hierarchies and, by studying the spectral properties of hierarchical structure, present an efficient and principled method for detecting them.


Assuntos
Algoritmos , Modelos Teóricos , Modelos Estatísticos
3.
Nat Commun ; 13(1): 3027, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35641541

RESUMO

The cardiac vascular and perivascular niche are of major importance in homeostasis and during disease, but we lack a complete understanding of its cellular heterogeneity and alteration in response to injury as a major driver of heart failure. Using combined genetic fate tracing with confocal imaging and single-cell RNA sequencing of this niche in homeostasis and during heart failure, we unravel cell type specific transcriptomic changes in fibroblast, endothelial, pericyte and vascular smooth muscle cell subtypes. We characterize a specific fibroblast subpopulation that exists during homeostasis, acquires Thbs4 expression and expands after injury driving cardiac fibrosis, and identify the transcription factor TEAD1 as a regulator of fibroblast activation. Endothelial cells display a proliferative response after injury, which is not sustained in later remodeling, together with transcriptional changes related to hypoxia, angiogenesis, and migration. Collectively, our data provides an extensive resource of transcriptomic changes in the vascular niche in hypertrophic cardiac remodeling.


Assuntos
Células Endoteliais , Insuficiência Cardíaca , Células Endoteliais/metabolismo , Fibroblastos/metabolismo , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Humanos , Miócitos de Músculo Liso/metabolismo , Pericitos/metabolismo
4.
Phys Rev Lett ; 127(7): 078301, 2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34459654

RESUMO

We consider state-aggregation schemes for Markov chains from an information-theoretic perspective. Specifically, we consider aggregating the states of a Markov chain such that the mutual information of the aggregated states separated by T time steps is maximized. We show that for T=1 this recovers the maximum-likelihood estimator of the degree-corrected stochastic block model as a particular case, which enables us to explain certain features of the likelihood landscape of this generative network model from a dynamical lens. We further highlight how we can uncover coherent, long-range dynamical modules for which considering a timescale T≫1 is essential. We demonstrate our results using synthetic flows and real-world ocean currents, where we are able to recover the fundamental features of the surface currents of the oceans.

5.
Phys Rev E ; 104(6-1): 064305, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35030846

RESUMO

We investigate consensus dynamics on temporal hypergraphs that encode network systems with time-dependent, multiway interactions. We compare these consensus processes with dynamics evolving on projections that remove the temporal and/or the multiway interactions of the higher-order network representation. For linear average consensus dynamics, we find that the convergence of a randomly switching time-varying system with multiway interactions is slower than the convergence of the corresponding system with pairwise interactions, which in turn exhibits a slower convergence rate than a consensus dynamics on the corresponding static network. We then consider a nonlinear consensus dynamics model in the temporal setting. Here we find that in addition to an effect on the convergence speed, the final consensus value of the temporal system can differ strongly from the consensus on the aggregated, static hypergraph. In particular, we observe a first-mover advantage in the consensus formation process: If there is a local majority opinion in the hyperedges that are active early on, then the majority in these first-mover groups has a higher influence on the final consensus value-a behavior that is not observable in this form in projections of the temporal hypergraph.

6.
Bioinformatics ; 37(22): 4263-4265, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-35032393

RESUMO

MOTIVATION: Ligand-receptor (LR) network analysis allows the characterization of cellular crosstalk based on single cell RNA-seq data. However, current methods typically provide a list of inferred LR interactions and do not allow the researcher to focus on specific cell types, ligands or receptors. In addition, most of these methods cannot quantify changes in crosstalk between two biological phenotypes. RESULTS: CrossTalkeR is a framework for network analysis and visualization of LR interactions. CrossTalkeR identifies relevant ligands, receptors and cell types contributing to changes in cell communication when contrasting two biological phenotypes, i.e. disease versus homeostasis. A case study on scRNA-seq of human myeloproliferative neoplasms reinforces the strengths of CrossTalkeR for characterization of changes in cellular crosstalk in disease. AVAILABILITY AND IMPLEMENTATION: CrosstalkeR is an R package available at: Github: https://github.com/CostaLab/CrossTalkeR. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Análise de Célula Única , Software , Perfilação da Expressão Gênica , Humanos , Ligantes , Análise de Sequência de RNA
7.
Phys Rev E ; 99(6-1): 062308, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31330590

RESUMO

Complex systems and relational data are often abstracted as dynamical processes on networks. To understand, predict, and control their behavior, a crucial step is to extract reduced descriptions of such networks. Inspired by notions from control theory, we propose a time-dependent dynamical similarity measure between nodes, which quantifies the effect a node-input has on the network. This dynamical similarity induces an embedding that can be employed for several analysis tasks. Here we focus on (i) dimensionality reduction, i.e., projecting nodes onto a low-dimensional space that captures dynamic similarity at different timescales, and (ii) how to exploit our embeddings to uncover functional modules. We exemplify our ideas through case studies focusing on directed networks without strong connectivity and signed networks. We further highlight how certain ideas from community detection can be generalized and linked to control theory, by using the here developed dynamical perspective.

8.
Proc Natl Acad Sci U S A ; 115(48): E11221-E11230, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30413619

RESUMO

Networks provide a powerful formalism for modeling complex systems by using a model of pairwise interactions. But much of the structure within these systems involves interactions that take place among more than two nodes at once-for example, communication within a group rather than person to person, collaboration among a team rather than a pair of coauthors, or biological interaction between a set of molecules rather than just two. Such higher-order interactions are ubiquitous, but their empirical study has received limited attention, and little is known about possible organizational principles of such structures. Here we study the temporal evolution of 19 datasets with explicit accounting for higher-order interactions. We show that there is a rich variety of structure in our datasets but datasets from the same system types have consistent patterns of higher-order structure. Furthermore, we find that tie strength and edge density are competing positive indicators of higher-order organization, and these trends are consistent across interactions involving differing numbers of nodes. To systematically further the study of theories for such higher-order structures, we propose higher-order link prediction as a benchmark problem to assess models and algorithms that predict higher-order structure. We find a fundamental difference from traditional pairwise link prediction, with a greater role for local rather than long-range information in predicting the appearance of new interactions.

9.
J Comput Neurosci ; 44(1): 63-74, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29139049

RESUMO

Directed information transmission is paramount for many social, physical, and biological systems. For neural systems, scientists have studied this problem under the paradigm of feedforward networks for decades. In most models of feedforward networks, activity is exclusively driven by excitatory neurons and the wiring patterns between them, while inhibitory neurons play only a stabilizing role for the network dynamics. Motivated by recent experimental discoveries of hippocampal circuitry, cortical circuitry, and the diversity of inhibitory neurons throughout the brain, here we illustrate that one can construct such networks even if the connectivity between the excitatory units in the system remains random. This is achieved by endowing inhibitory nodes with a more active role in the network. Our findings demonstrate that apparent feedforward activity can be caused by a much broader network-architectural basis than often assumed.


Assuntos
Encéfalo/fisiologia , Modelos Neurológicos , Rede Nervosa/fisiologia , Inibição Neural , Neurônios/fisiologia , Potenciais de Ação/fisiologia , Animais , Encéfalo/citologia , Simulação por Computador , Humanos , Redes Neurais de Computação , Fatores de Tempo
10.
Nat Methods ; 14(5): 483-486, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28346451

RESUMO

Single-cell RNA-seq enables the quantitative characterization of cell types based on global transcriptome profiles. We present single-cell consensus clustering (SC3), a user-friendly tool for unsupervised clustering, which achieves high accuracy and robustness by combining multiple clustering solutions through a consensus approach (http://bioconductor.org/packages/SC3). We demonstrate that SC3 is capable of identifying subclones from the transcriptomes of neoplastic cells collected from patients.


Assuntos
Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Análise por Conglomerados , Conjuntos de Dados como Assunto , Células-Tronco Hematopoéticas/citologia , Humanos , Máquina de Vetores de Suporte
11.
Appl Netw Sci ; 2(1): 4, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-30533512

RESUMO

Community detection, the decomposition of a graph into essential building blocks, has been a core research topic in network science over the past years. Since a precise notion of what constitutes a community has remained evasive, community detection algorithms have often been compared on benchmark graphs with a particular form of assortative community structure and classified based on the mathematical techniques they employ. However, this comparison can be misleading because apparent similarities in their mathematical machinery can disguise different goals and reasons for why we want to employ community detection in the first place. Here we provide a focused review of these different motivations that underpin community detection. This problem-driven classification is useful in applied network science, where it is important to select an appropriate algorithm for the given purpose. Moreover, highlighting the different facets of community detection also delineates the many lines of research and points out open directions and avenues for future research.

12.
Chaos ; 26(9): 094821, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27781454

RESUMO

Synchronization over networks depends strongly on the structure of the coupling between the oscillators. When the coupling presents certain regularities, the dynamics can be coarse-grained into clusters by means of External Equitable Partitions of the network graph and their associated quotient graphs. We exploit this graph-theoretical concept to study the phenomenon of cluster synchronization, in which different groups of nodes converge to distinct behaviors. We derive conditions and properties of networks in which such clustered behavior emerges and show that the ensuing dynamics is the result of the localization of the eigenvectors of the associated graph Laplacians linked to the existence of invariant subspaces. The framework is applied to both linear and non-linear models, first for the standard case of networks with positive edges, before being generalized to the case of signed networks with both positive and negative interactions. We illustrate our results with examples of both signed and unsigned graphs for consensus dynamics and for partial synchronization of oscillator networks under the master stability function as well as Kuramoto oscillators.

13.
PLoS Comput Biol ; 12(8): e1005055, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27494178

RESUMO

We exploit flow propagation on the directed neuronal network of the nematode C. elegans to reveal dynamically relevant features of its connectome. We find flow-based groupings of neurons at different levels of granularity, which we relate to functional and anatomical constituents of its nervous system. A systematic in silico evaluation of the full set of single and double neuron ablations is used to identify deletions that induce the most severe disruptions of the multi-resolution flow structure. Such ablations are linked to functionally relevant neurons, and suggest potential candidates for further in vivo investigation. In addition, we use the directional patterns of incoming and outgoing network flows at all scales to identify flow profiles for the neurons in the connectome, without pre-imposing a priori categories. The four flow roles identified are linked to signal propagation motivated by biological input-response scenarios.


Assuntos
Caenorhabditis elegans/fisiologia , Conectoma , Modelos Neurológicos , Rede Nervosa/fisiologia , Animais , Biologia Computacional
14.
Sci Rep ; 6: 23194, 2016 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-27029508

RESUMO

Complex systems made of interacting elements are commonly abstracted as networks, in which nodes are associated with dynamic state variables, whose evolution is driven by interactions mediated by the edges. Markov processes have been the prevailing paradigm to model such a network-based dynamics, for instance in the form of random walks or other types of diffusions. Despite the success of this modelling perspective for numerous applications, it represents an over-simplification of several real-world systems. Importantly, simple Markov models lack memory in their dynamics, an assumption often not realistic in practice. Here, we explore possibilities to enrich the system description by means of second-order Markov models, exploiting empirical pathway information. We focus on the problem of community detection and show that standard network algorithms can be generalized in order to extract novel temporal information about the system under investigation. We also apply our methodology to temporal networks, where we can uncover communities shaped by the temporal correlations in the system. Finally, we discuss relations of the framework of second order Markov processes and the recently proposed formalism of using non-backtracking matrices for community detection.


Assuntos
Redes Comunitárias/estatística & dados numéricos , Cadeias de Markov , Modelos Estatísticos , Algoritmos , Humanos , Fatores de Tempo
15.
PLoS Comput Biol ; 11(7): e1004196, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26176664

RESUMO

Unraveling the interplay between connectivity and spatio-temporal dynamics in neuronal networks is a key step to advance our understanding of neuronal information processing. Here we investigate how particular features of network connectivity underpin the propensity of neural networks to generate slow-switching assembly (SSA) dynamics, i.e., sustained epochs of increased firing within assemblies of neurons which transition slowly between different assemblies throughout the network. We show that the emergence of SSA activity is linked to spectral properties of the asymmetric synaptic weight matrix. In particular, the leading eigenvalues that dictate the slow dynamics exhibit a gap with respect to the bulk of the spectrum, and the associated Schur vectors exhibit a measure of block-localization on groups of neurons, thus resulting in coherent dynamical activity on those groups. Through simple rate models, we gain analytical understanding of the origin and importance of the spectral gap, and use these insights to develop new network topologies with alternative connectivity paradigms which also display SSA activity. Specifically, SSA dynamics involving excitatory and inhibitory neurons can be achieved by modifying the connectivity patterns between both types of neurons. We also show that SSA activity can occur at multiple timescales reflecting a hierarchy in the connectivity, and demonstrate the emergence of SSA in small-world like networks. Our work provides a step towards understanding how network structure (uncovered through advancements in neuroanatomy and connectomics) can impact on spatio-temporal neural activity and constrain the resulting dynamics.


Assuntos
Potenciais de Ação/fisiologia , Potenciação de Longa Duração/fisiologia , Modelos Neurológicos , Rede Nervosa/anatomia & histologia , Rede Nervosa/fisiologia , Plasticidade Neuronal/fisiologia , Animais , Simulação por Computador , Conectoma , Humanos , Modelos Anatômicos , Análise Espaço-Temporal , Transmissão Sináptica/fisiologia
16.
J Neurosci Methods ; 236: 92-106, 2014 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-25169050

RESUMO

BACKGROUND: Current neuronal monitoring techniques, such as calcium imaging and multi-electrode arrays, enable recordings of spiking activity from hundreds of neurons simultaneously. Of primary importance in systems neuroscience is the identification of cell assemblies: groups of neurons that cooperate in some form within the recorded population. NEW METHOD: We introduce a simple, integrated framework for the detection of cell-assemblies from spiking data without a priori assumptions about the size or number of groups present. We define a biophysically-inspired measure to extract a directed functional connectivity matrix between both excitatory and inhibitory neurons based on their spiking history. The resulting network representation is analyzed using the Markov Stability framework, a graph theoretical method for community detection across scales, to reveal groups of neurons that are significantly related in the recorded time-series at different levels of granularity. RESULTS AND COMPARISON WITH EXISTING METHODS: Using synthetic spike-trains, including simulated data from leaky-integrate-and-fire networks, our method is able to identify important patterns in the data such as hierarchical structure that are missed by other standard methods. We further apply the method to experimental data from retinal ganglion cells of mouse and salamander, in which we identify cell-groups that correspond to known functional types, and to hippocampal recordings from rats exploring a linear track, where we detect place cells with high fidelity. CONCLUSIONS: We present a versatile method to detect neural assemblies in spiking data applicable across a spectrum of relevant scales that contributes to understanding spatio-temporal information gathered from systems neuroscience experiments.


Assuntos
Potenciais de Ação , Neurônios/fisiologia , Processamento de Sinais Assistido por Computador , Algoritmos , Ambystoma , Animais , Simulação por Computador , Comportamento Exploratório/fisiologia , Hipocampo/fisiologia , Cadeias de Markov , Camundongos Endogâmicos C57BL , Modelos Neurológicos , Inibição Neural/fisiologia , Ratos , Células Ganglionares da Retina/fisiologia , Percepção Espacial/fisiologia , Técnicas de Cultura de Tecidos
17.
Phys Rev E Stat Nonlin Soft Matter Phys ; 86(2 Pt 2): 026112, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23005830

RESUMO

The detection of community structure in networks is intimately related to finding a concise description of the network in terms of its modules. This notion has been recently exploited by the map equation formalism [Rosvall and Bergstrom, Proc. Natl. Acad. Sci. USA 105, 1118 (2008)] through an information-theoretic description of the process of coding inter- and intracommunity transitions of a random walker in the network at stationarity. However, a thorough study of the relationship between the full Markov dynamics and the coding mechanism is still lacking. We show here that the original map coding scheme, which is both block-averaged and one-step, neglects the internal structure of the communities and introduces an upper scale, the "field-of-view" limit, in the communities it can detect. As a consequence, map is well tuned to detect clique-like communities but can lead to undesirable overpartitioning when communities are far from clique-like. We show that a signature of this behavior is a large compression gap: The map description length is far from its ideal limit. To address this issue, we propose a simple dynamic approach that introduces time explicitly into the map coding through the analysis of the weighted adjacency matrix of the time-dependent multistep transition matrix of the Markov process. The resulting Markov time sweeping induces a dynamical zooming across scales that can reveal (potentially multiscale) community structure above the field-of-view limit, with the relevant partitions indicated by a small compression gap.


Assuntos
Características de Residência , Algoritmos , Animais , Compressão de Dados , Humanos , Cadeias de Markov , Modelos Biológicos , Modelos Estatísticos , Apoio Social
18.
PLoS One ; 7(2): e32210, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22384178

RESUMO

In recent years, there has been a surge of interest in community detection algorithms for complex networks. A variety of computational heuristics, some with a long history, have been proposed for the identification of communities or, alternatively, of good graph partitions. In most cases, the algorithms maximize a particular objective function, thereby finding the 'right' split into communities. Although a thorough comparison of algorithms is still lacking, there has been an effort to design benchmarks, i.e., random graph models with known community structure against which algorithms can be evaluated. However, popular community detection methods and benchmarks normally assume an implicit notion of community based on clique-like subgraphs, a form of community structure that is not always characteristic of real networks. Specifically, networks that emerge from geometric constraints can have natural non clique-like substructures with large effective diameters, which can be interpreted as long-range communities. In this work, we show that long-range communities escape detection by popular methods, which are blinded by a restricted 'field-of-view' limit, an intrinsic upper scale on the communities they can detect. The field-of-view limit means that long-range communities tend to be overpartitioned. We show how by adopting a dynamical perspective towards community detection [1], [2], in which the evolution of a Markov process on the graph is used as a zooming lens over the structure of the network at all scales, one can detect both clique- or non clique-like communities without imposing an upper scale to the detection. Consequently, the performance of algorithms on inherently low-diameter, clique-like benchmarks may not always be indicative of equally good results in real networks with local, sparser connectivity. We illustrate our ideas with constructive examples and through the analysis of real-world networks from imaging, protein structures and the power grid, where a multiscale structure of non clique-like communities is revealed.


Assuntos
Biologia Computacional/métodos , Adenilato Quinase/química , Algoritmos , Fontes de Energia Elétrica , Processamento de Imagem Assistida por Computador , Cadeias de Markov , Modelos Estatísticos , Conformação Molecular , Conformação Proteica , Estrutura Secundária de Proteína , Características de Residência , Software
19.
J Comput Neurosci ; 32(1): 101-18, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21667155

RESUMO

The Ising model has recently received much attention for the statistical description of neural spike train data. In this paper, we propose and demonstrate its use for building decoders capable of predicting, on a millisecond timescale, the stimulus represented by a pattern of neural activity. After fitting to a training dataset, the Ising decoder can be applied "online" for instantaneous decoding of test data. While such models can be fit exactly using Boltzmann learning, this approach rapidly becomes computationally intractable as neural ensemble size increases. We show that several approaches, including the Thouless-Anderson-Palmer (TAP) mean field approach from statistical physics, and the recently developed Minimum Probability Flow Learning (MPFL) algorithm, can be used for rapid inference of model parameters in large-scale neural ensembles. Use of the Ising model for decoding, unlike other problems such as functional connectivity estimation, requires estimation of the partition function. As this involves summation over all possible responses, this step can be limiting. Mean field approaches avoid this problem by providing an analytical expression for the partition function. We demonstrate these decoding techniques by applying them to simulated neural ensemble responses from a mouse visual cortex model, finding an improvement in decoder performance for a model with heterogeneous as opposed to homogeneous neural tuning and response properties. Our results demonstrate the practicality of using the Ising model to read out, or decode, spatial patterns of activity comprised of many hundreds of neurons.


Assuntos
Potenciais de Ação/fisiologia , Modelos Neurológicos , Neurônios/fisiologia , Animais , Simulação por Computador , Camundongos , Orientação/fisiologia , Estimulação Luminosa/métodos , Córtex Visual/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...