Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 14(11): 14798-14808, 2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-32905703

RESUMO

Metal contacts are a key limiter to the electronic performance of two-dimensional (2D) semiconductor devices. Here, we present a comprehensive study of contact interfaces between seven metals (Y, Sc, Ag, Al, Ti, Au, Ni, with work functions from 3.1 to 5.2 eV) and monolayer MoS2 grown by chemical vapor deposition. We evaporate thin metal films onto MoS2 and study the interfaces by Raman spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, transmission electron microscopy, and electrical characterization. We uncover that (1) ultrathin oxidized Al dopes MoS2 n-type (>2 × 1012 cm-2) without degrading its mobility, (2) Ag, Au, and Ni deposition causes varying levels of damage to MoS2 (e.g. broadening Raman E' peak from <3 to >6 cm-1), and (3) Ti, Sc, and Y react with MoS2. Reactive metals must be avoided in contacts to monolayer MoS2, but control studies reveal the reaction is mostly limited to the top layer of multilayer films. Finally, we find that (4) thin metals do not significantly strain MoS2, as confirmed by X-ray diffraction. These are important findings for metal contacts to MoS2 and broadly applicable to many other 2D semiconductors.

2.
ACS Appl Mater Interfaces ; 9(27): 23072-23080, 2017 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-28653822

RESUMO

Regardless of the application, MoS2 requires encapsulation or passivation with a high-quality dielectric, whether as an integral aspect of the device (as with top-gated field-effect transistors (FETs)) or for protection from ambient conditions. However, the chemically inert surface of MoS2 prevents uniform growth of a dielectric film using atomic layer deposition (ALD)-the most controlled synthesis technique. In this work, we show that a plasma-enhanced ALD (PEALD) process, compared to traditional thermal ALD, substantially improves nucleation on MoS2 without hampering its electrical performance, and enables uniform growth of high-κ dielectrics to sub-5 nm thicknesses. Substrate-gated MoS2 FETs were studied before/after ALD and PEALD of Al2O3 and HfO2, indicating the impact of various growth conditions on MoS2 properties, with PEALD of HfO2 proving to be most favorable. Top-gated FETs with high-κ films as thin as ∼3.5 nm yielded robust performance with low leakage current and strong gate control. Mechanisms for the dramatic nucleation improvement and impact of PEALD on the MoS2 crystal structure were explored by X-ray photoelectron spectroscopy (XPS). In addition to providing a detailed analysis of the benefits of PEALD versus ALD on MoS2, this work reveals a straightforward approach for realizing ultrathin films of device-quality high-κ dielectrics on 2D crystals without the use of additional nucleation layers or damage to the electrical performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...