Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Methods ; 12: 18, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26962325

RESUMO

BACKGROUND: Although customized endonucleases [transcription activator-like effector nucleases (TALENs) and RNA-guided endonucleases (RGENs)] are known to be effective agents of mutagenesis in various host plants, newly designed endonuclease constructs require some pre-validation with respect to functionality before investing in the creation of stable transgenic plants. RESULTS: A simple, biolistics-based leaf epidermis transient expression test has been developed, based on reconstituting the translational reading frame of a mutated, non-functional yfp reporter gene. Quantification of mutation efficacy was made possible by co-bombarding the explant with a constitutive mCherry expression cassette, thereby allowing the ratio between the number of red and yellow fluorescing cells to serve as a metric for mutation efficiency. Challenging either stable mutant alleles of a compromised version of gfp in tobacco and barley or the barley MLO gene with TALENs/RGENs confirmed the capacity to induce site-directed mutations. CONCLUSIONS: A convenient procedure to assay the cleavage activity of customized endonucleases has been established. The system is independent of the endonuclease platform and operates in both di- and monocotyledonous hosts. It not only enables the validation of a TALEN/RGEN's functionality prior to the creation of stable mutants, but also serves as a suitable tool to optimize the design of endonuclease constructs.

2.
Front Plant Sci ; 7: 1995, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28101094

RESUMO

Customizable endonucleases are providing an effective tool for genome engineering. The resulting primary transgenic individuals (T0) are typically heterozygous and/or chimeric with respect to any mutations induced. To generate genetically fixed mutants, they are conventionally allowed to self-pollinate, a procedure which segregates individuals into mutant heterozygotes/homozygotes and wild types. The chances of recovering homozygous mutants among the progeny depend not only on meiotic segregation but also on the frequency of mutated germline cells in the chimeric mother plant. In Nicotiana species, the heritability of Cas9-induced mutations has not been demonstrated yet. RNA-guided Cas9 endonuclease-mediated mutagenesis was targeted to the green fluorescent protein (GFP) gene harbored by a transgenic tobacco line. Upon retransformation using a GFP-specific guide RNA/Cas9 construct, the T0 plants were allowed to either self-pollinate, or were propagated via regeneration from in vitro cultured embryogenic pollen which give rise to haploid/doubled haploid plants or from leaf explants that form plants vegetatively. Single or multiple mutations were detected in 80% of the T0 plants. About half of these mutations proved heritable via selfing. Regeneration from in vitro cultured embryogenic pollen allowed for homozygous mutants to be produced more efficiently than via sexual reproduction. Consequently, embryogenic pollen culture provides a convenient method to rapidly generate a variety of genetically fixed mutants following site-directed mutagenesis. The recovery of a mutation not found among sexually produced and analyzed progeny was shown to be achievable through vegetative plant propagation in vitro, which eventually resulted in heritability when the somatic clones were selfed. In addition, some in-frame mutations were associated with functional attenuation of the target gene rather than its full knock-out. The generation of mutants with compromised rather than abolished gene functionality holds promise for future approaches to the conclusive functional validation of genes which are indispensible for the plant.

3.
PLoS One ; 9(3): e92046, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24643227

RESUMO

Transcription activator-like effector nucleases (TALENs) are customizable fusion proteins able to cleave virtually any genomic DNA sequence of choice, and thereby to generate site-directed genetic modifications in a wide range of cells and organisms. In the present study, we expressed TALENs in pollen-derived, regenerable cells to establish the generation of instantly true-breeding mutant plants. A gfp-specific TALEN pair was expressed via Agrobacterium-mediated transformation in embryogenic pollen of transgenic barley harboring a functional copy of gfp. Thanks to the haploid nature of the target cells, knock-out mutations were readily detected, and homozygous primary mutant plants obtained following genome duplication. In all, 22% of the TALEN transgenics proved knocked out with respect to gfp, and the loss of function could be ascribed to the deletions of between four and 36 nucleotides in length. The altered gfp alleles were transmitted normally through meiosis, and the knock-out phenotype was consistently shown by the offspring of two independent mutants. Thus, here we describe the efficient production of TALEN-mediated gene knock-outs in barley that are instantaneously homozygous and non-chimeric in regard to the site-directed mutations induced. This TALEN approach has broad applicability for both elucidating gene function and tailoring the phenotype of barley and other crop species.


Assuntos
Endonucleases/genética , Engenharia Genética/métodos , Proteínas de Fluorescência Verde/genética , Hordeum/genética , Plantas Geneticamente Modificadas , Alelos , Sequência de Aminoácidos , Sequência de Bases , Cruzamento , Técnicas de Inativação de Genes , Haploidia , Homozigoto , Dados de Sequência Molecular , Mutação , Proteínas Recombinantes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...