Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Nutr ; 11: 1308463, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38549745

RESUMO

In celiac disease, intestinal transglutaminase (TG2) produces immunogenic peptides by deamidation of gluten proteins. These products drive the celiac immune response. We have previously identified an interaction between gliadin and a food additive, E304i, which prevents gliadin processing (both deamidation and transamidation) by TG2, in vitro. In this study, we investigated if E304i could prevent TG2 processing of gluten in flours and if the effect was evident after simulated gastrointestinal digestion. We also confirmed the outcome in vivo in a human cross-over intervention study in healthy non-celiac participants. TG2 transamidation experiments (in vitro) of digested wheat and rye flours supplemented with E304i at 30 mg/g indicated full prevention of TG2 processing. In the intervention study, participant serum levels of deamidated gliadin peptides (dGDPs) increased after the intake of reference wheat rolls (80 g per day for a week; 41% ± 4% compared to washout), while the intake of the intervention E304i/zinc sulfate wheat rolls generated a modest response (80 g per day for a week; 8 ± 10% of control). The difference between the groups (32.8 ± 15.6%) was significant (p = 0.00003, n = 9), confirming that E304i /zinc addition to wheat rolls prevented TG2 deamidation of gluten. In conclusion, this study shows that E304i /zinc addition to wheat rolls prevents TG2 deamidation of gluten in non-celiac participants. Clinical trial registration: clinicaltrials.gov, identifier (NCT06005376).

2.
Mar Drugs ; 21(12)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38132926

RESUMO

Chitin/chitosan and collagen are two of the most important bioactive compounds, with applications in the pharmaceutical, veterinary, nutraceutical, cosmetic, biomaterials, and other industries. When extracted from non-edible parts of fish and shellfish, by-catches, and invasive species, their use contributes to a more sustainable and circular economy. The present article reviews the scientific knowledge and publication trends along the marine chitin/chitosan and collagen value chains and assesses how researchers, industry players, and end-users can bridge the gap between scientific understanding and industrial applications. Overall, research on chitin/chitosan remains focused on the compound itself rather than its market applications. Still, chitin/chitosan use is expected to increase in food and biomedical applications, while that of collagen is expected to increase in biomedical, cosmetic, pharmaceutical, and nutritional applications. Sustainable practices, such as the reuse of waste materials, contribute to strengthen both value chains; the identified weaknesses include the lack of studies considering market trends, social sustainability, and profitability, as well as insufficient examination of intellectual property rights. Government regulations, market demand, consumer preferences, technological advancements, environmental challenges, and legal frameworks play significant roles in shaping both value chains. Addressing these factors is crucial for seizing opportunities, fostering sustainability, complying with regulations, and maintaining competitiveness in these constantly evolving value chains.


Assuntos
Quitina , Quitosana , Colágeno , Animais , Materiais Biocompatíveis/economia , Quitina/economia , Quitosana/economia , Cosméticos , Preparações Farmacêuticas , Frutos do Mar , Colágeno/economia
3.
Int J Mol Sci ; 24(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36982582

RESUMO

We previously showed that two iron compounds that are orally ingested by humans, namely ferric EDTA and ferric citrate, can induce an oncogenic growth factor (amphiregulin) in human intestinal epithelial adenocarcinoma cell lines. Here, we further screened these iron compounds, plus four other iron chelates and six iron salts (i.e., 12 oral iron compounds in total), for their effects on biomarkers of cancer and inflammation. Ferric pyrophosphate and ferric EDTA were the main inducers of amphiregulin and its receptor monomer, IGFr1. Moreover, at the maximum iron concentrations investigated (500 µM), the highest levels of amphiregulin were induced by the six iron chelates, while four of these also increased IGfr1. In addition, we observed that ferric pyrophosphate promoted signaling via the JAK/STAT pathway by up-regulating the cytokine receptor subunit IFN-γr1 and IL-6. For pro-inflammatory cyclooxygenase-2 (COX-2), ferric pyrophosphate but not ferric EDTA elevated intracellular levels. This, however, did not drive the other biomarkers based on COX-2 inhibition studies and was probably downstream of IL-6. We conclude that of all oral iron compounds, iron chelates may particularly elevate intracellular amphiregulin. Ferric pyrophosphate additionally induced COX-2, probably because of the high IL-6 induction that was observed with this compound.


Assuntos
Adenocarcinoma , Compostos de Ferro , Humanos , Ciclo-Oxigenase 2/metabolismo , Sais/metabolismo , Ácido Edético , Anfirregulina/metabolismo , Interleucina-6/metabolismo , Janus Quinases/metabolismo , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais , Ferro/metabolismo , Quelantes de Ferro/farmacologia , Compostos Férricos/farmacologia , Linhagem Celular , Biomarcadores
4.
Nutr Rev ; 80(6): 1648-1663, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-34741520

RESUMO

Cereal grains are the main dietary source of energy, carbohydrates, and plant proteins world-wide. Currently, only 41% of grains are used for human consumption, and up to 35% are used for animal feed. Cereals have been overlooked as a source of environmentally sustainable and healthy plant proteins and could play a major role in transitioning towards a more sustainable food system for healthy diets. Cereal plant proteins are of good nutritional quality, but lysine is often the limiting amino acid. When consumed as whole grains, cereals provide health-protecting components such as dietary fiber and phytochemicals. Shifting grain use from feed to traditional foods and conceptually new foods and ingredients could improve protein security and alleviate climate change. Rapid development of new grain-based food ingredients and use of grains in new food contexts, such as dairy replacements and meat analogues, could accelerate the transition. This review discusses recent developments and outlines future perspectives for cereal grain use.


Assuntos
Fibras na Dieta , Grão Comestível , Fibras na Dieta/análise , Grão Comestível/química , Humanos , Valor Nutritivo , Proteínas de Plantas , Grãos Integrais
5.
Food Chem ; 356: 129683, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-33845254

RESUMO

Seaweed is a promising sustainable source of vegan protein as its farming does not require arable land, pesticides/insecticides, nor freshwater supply. However, to be explored as a novel protein source the content and nutritional quality of protein in seaweed need to be improved. We assessed the influence of pH-shift processing on protein degree of hydrolysis (%DH), protein/peptide size distribution, accessibility, and cell bioavailability of Ulva fenestrata proteins after in vitro gastrointestinal digestion. pH-shift processing of Ulva, which concentrated its proteins 3.5-times, significantly improved the %DH from 27.7±2.6% to 35.7±2.1% and the amino acid accessibility from 56.9±4.1% to 72.7±0.6%. Due to the higher amino acid accessibility, the amount of most amino acids transported across the cell monolayers was higher in the protein extracts. Regarding bioavailability, both Ulva and protein extracts were as bioavailable as casein. The protein/peptide molecular size distribution after digestion did not disclose a clear association with bioavailability.


Assuntos
Proteínas de Algas/metabolismo , Ulva/metabolismo , Proteínas de Algas/isolamento & purificação , Aminoácidos/metabolismo , Aminoácidos/farmacologia , Células CACO-2 , Digestão , Humanos , Concentração de Íons de Hidrogênio , Hidrólise , Permeabilidade/efeitos dos fármacos , Fenóis/química
6.
Front Bioeng Biotechnol ; 9: 629083, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33681165

RESUMO

We have developed a LCMS metabolomic workflow to investigate metabolic patterns from human intestinal cells treated with simulated gastrointestinal-digested hydrolyzed crab waste materials. This workflow facilitates smart and reproducible comparisons of cell cultures exposed to different treatments. In this case the variable was the hydrolysis methods, also accounting for the GI digestion giving an output of direct correlation between cellular metabolic patterns caused by the treatments. In addition, we used the output from this workflow to select treatments for further evaluation of the Caco-2 cell response in terms of tentative anti-inflammatory activity in the hopes to find value in the crab waste materials to be used for food products. As hypothesized, the treatment identified to change the cellular metabolomic pattern most readily, was also found to cause the greatest effect in the cells, although the response was pro-inflammatory rather than anti-inflammatory, it proves that changes in cellular metabolic patterns are useful predictors of bioactivity. We conclude that the developed workflow allows for cost effective, rapid sample preparation as well as accurate and repeatable LCMS analysis and introduces a data pipeline specifically for probe the novel metabolite patterns created as a means to assess the performing treatments.

7.
Nutr Rev ; 79(6): 693-708, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32989449

RESUMO

The performance of the human brain is based on an interplay between the inherited genotype and external environmental factors, including diet. Food and nutrition, essential in maintenance of brain performance, also aid in prevention and treatment of mental disorders. Both the overall composition of the human diet and specific dietary components have been shown to have an impact on brain function in various experimental models and epidemiological studies. This narrative review provides an overview of the role of diet in 5 key areas of brain function related to mental health and performance, including: (1) brain development, (2) signaling networks and neurotransmitters in the brain, (3) cognition and memory, (4) the balance between protein formation and degradation, and (5) deteriorative effects due to chronic inflammatory processes. Finally, the role of diet in epigenetic regulation of brain physiology is discussed.


Assuntos
Encéfalo , Dieta , Epigênese Genética , Saúde , Encéfalo/fisiologia , Cognição/fisiologia , Dieta/estatística & dados numéricos , Alimentos/normas , Saúde/estatística & dados numéricos , Humanos
8.
Sci Rep ; 10(1): 5340, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32210248

RESUMO

In a series of two studies, we report the development (this study) and evaluation (part II) of a novel ferric phytate compound designed as a condiment iron fortificant. Condiments are used as iron fortification vehicles to reduce the prevalence  of iron deficiency. The challenge for iron fortificants in e.g. a bouillon matrix is to avoid undesired sensory effects and to ensure a reasonable cost. We added phytic acid to chelate iron, and hydrolysed protein to counteract the inhibiting effect of phytic acid on iron bioaccessibility. We characterised four novel ferric phytate compounds, destabilised by hydrolysed plant protein or amino acids. Colour stability of fortified bouillons with ferric phytate compounds was superior to bouillons fortified with ferrous sulfate. The iron-phytate-hydrolysed corn protein compound (Fe-PA-HCP) resulted in highest cellular ferritin induction in Caco-2 cells, in both vegetable (36.1 ± 13.40 ng/mg protein) and chicken (73.9 ± 19.93 ng/mg protein) bouillon matrices as observed in the human Caco-2/HepG2 cell model. Iron uptake (as estimated by ferritin production) from the Fe-PA-HCP compound was about 55% (chicken bouillon) and 66% (vegetable bouillon) of the iron uptake from ferrous sulfate. Based on this study, the Fe-PA-HCP compound was chosen for further evaluation (part II).

9.
Int J Mol Sci ; 20(23)2019 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-31771283

RESUMO

Excess energy intake can trigger an uncontrolled inflammatory response, leading to systemic low-grade inflammation and metabolic disturbances that are hypothesised to contribute to cardiovascular disease and type 2 diabetes. The long chain n-3 polyunsaturated fatty acids (LC n-3 PUFAs) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are suggested to mitigate this inflammatory response, but the mechanisms are unclear, especially at the tissue level. Adipose tissues, the first tissues to give an inflammatory response, may be an important target site of action for EPA and DHA. To evaluate the effects of EPA and DHA in white and brown adipose tissues, we fed male C57Bl/6J mice either a high fat diet (HFD) with 5% corn oil, an HFD with 40% of the corn oil substituted for purified EPA and DHA triglycerides (HFD-ED), or normal chow, for 8 weeks. Fatty acid profiling and transcriptomics were used to study how EPA and DHA affect retroperitoneal white and brown adipose tissues. HFD-ED fed mice showed reduced lipid accumulation and levels of the pro-inflammatory fatty acid arachidonic acid in both white and brown adipose tissues, compared with HFD-corn oil fed animals. The transcriptomic analysis showed changes in ß-oxidation pathways, supporting the decreased lipid accumulation in the HFD-ED fed mice. Therefore, our data suggests that EPA and DHA supplementation of a high fat diet may be anti-inflammatory, as well as reduce lipid accumulation in adipose tissues.


Assuntos
Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Dieta Hiperlipídica , Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Eicosapentaenoico/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Animais , Ácido Araquidônico/metabolismo , Óleo de Milho/farmacologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Ácidos Graxos Ômega-3/farmacologia , Regulação da Expressão Gênica , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , PPAR alfa/genética , PPAR alfa/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
Nutrients ; 10(12)2018 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-30544799

RESUMO

Several human interventions have indicated that Lactobacillus plantarum 299v (L. plantarum 299v) increases intestinal iron absorption. The aim of the present study was to investigate possible effects of L. plantarum 299v on the mechanisms of iron absorption on the cellular level. We have previously shown that lactic fermentation of vegetables increased iron absorption in humans. It was revealed that the level of ferric iron [Fe (H2O)5]2+ was increased after fermentation. Therefore, we used voltammetry to measure the oxidation state of iron in simulated gastrointestinal digested oat and mango drinks and capsule meals containing L. plantarum 299v. We also exposed human intestinal co-cultures of enterocytes and goblet cells (Caco-2/HT29 MTX) to the supplements in order to study the effect on proteins possibly involved (MUC5AC, DCYTB, DMT1, and ferritin). We detected an increase in ferric iron in the digested meals and drinks containing L. plantarum 299v. In the intestinal cell model, we observed that the ferric reductase DCYTB increased in the presence of L. plantarum 299v, while the production of mucin (MUC5AC) decreased independently of L. plantarum 299v. In conclusion, the data suggest that the effect of L. plantarum 299v on iron metabolism is mediated through driving the Fe3+/DCYTB axis.


Assuntos
Grupo dos Citocromos b/metabolismo , Suplementos Nutricionais/microbiologia , Ferritinas/metabolismo , Ferro da Dieta/farmacologia , Lactobacillus plantarum , Oxirredutases/metabolismo , Células CACO-2 , Técnicas de Cocultura , Ferritinas/análise , Células HT29 , Humanos , Fatores de Transcrição/metabolismo , Regulação para Cima/efeitos dos fármacos
11.
Oncotarget ; 9(24): 17066-17077, 2018 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-29682205

RESUMO

Ferric chelates may be used as oral iron supplements or phosphate binders but both ferric citrate and ferric EDTA have been shown to promote tumor burden in murine models of colon cancer. Here we studied their effects on cancer cell growth, at typical supplemental iron levels encountered in the gastrointestinal tract (0.01-0.2 mM). Caco-2 and/or Hutu-80 cells were exposed to these forms of chelated iron or to ferrous sulfate and outcomes were assessed using cell proliferation assays, proteome profiler arrays, western blot, and ELISA. Ferric EDTA and ferric citrate increased cellular levels of the onco-protein amphiregulin and its receptor (EGFr) which in turn stimulated the activation of the MAP kinase ERK. Simultaneously, the expression of the negative Wnt regulator, DKK-1, increased suggesting that cell proliferation through the Wnt pathway may be less pronounced in the presence of ferric EDTA and ferric citrate, unlike for ferrous sulfate. Moreover, ferrous sulfate did not increase levels of cellular amphiregulin or EGFr. We conclude that specific iron compounds affect cell signaling differently and some may increase the risk of colon cancer advancement in an amphiregulin-dependent fashion. Further scrutiny of safe oral iron use is merited.

12.
Sci Rep ; 8(1): 5465, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29615738

RESUMO

The most common allergen in fish, the highly-abundant protein ß-parvalbumin, forms amyloid structures as a way to avoid gastrointestinal degradation and transit to the blood. In humans, the same amyloid structures are mostly associated with neurodegenerative disorders such as Alzheimer's and Parkinson's. We here assessed a putative connection between these amyloids using recombinant Atlantic cod ß-parvalbumin and the key amyloidogenic protein in Parkinson's disease, α-synuclein. Using a set of in vitro biophysical methods, we discovered that ß-parvalbumin readily inhibits amyloid formation of α-synuclein. The underlying mechanism was found to involve α-synuclein binding to the surface of ß-parvalbumin amyloid fibers. In addition to being a new amyloid inhibition mechanism, the data suggest that health benefits of fish may be explained in part by cross-reaction of ß-parvalbumin with human amyloidogenic proteins.


Assuntos
Amiloide/química , Proteínas de Peixes/farmacologia , Multimerização Proteica/efeitos dos fármacos , alfa-Sinucleína/química , Saúde , Humanos , Estrutura Secundária de Proteína
13.
Food Funct ; 8(12): 4768, 2017 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-29211087

RESUMO

Correction for 'Formation of reactive aldehydes (MDA, HHE, HNE) during the digestion of cod liver oil: comparison of human and porcine in vitro digestion models' by Cecilia Tullberg et al., Food Funct., 2016, 7, 1401-1412.

14.
Nutrients ; 9(11)2017 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-29113061

RESUMO

In vitro digestion of marine oils has been reported to promote lipid oxidation, including the formation of reactive aldehydes (e.g., malondialdehyde (MDA) and 4-hydroxy-2-hexenal (HHE)). We aimed to investigate if human in vitro digestion of supplemental levels of oils from algae, cod liver, and krill, in addition to pure MDA and HHE, affect intestinal Caco-2 cell survival and oxidative stress. Cell viability was not significantly affected by the digests of marine oils or by pure MDA and HHE (0-90 µM). Cellular levels of HSP-70, a chaperone involved in the prevention of stress-induced protein unfolding was significantly decreased (14%, 28%, and 14% of control for algae, cod and krill oil, respectively; p ≤ 0.05). The oxidoreductase thioredoxin-1 (Trx-1) involved in reducing oxidative stress was also lower after incubation with the digested oils (26%, 53%, and 22% of control for algae, cod, and krill oil, respectively; p ≤ 0.001). The aldehydes MDA and HHE did not affect HSP-70 or Trx-1 at low levels (8.3 and 1.4 µM, respectively), whilst a mixture of MDA and HHE lowered Trx-1 at high levels (45 µM), indicating less exposure to oxidative stress. We conclude that human digests of the investigated marine oils and their content of MDA and HHE did not cause a stress response in human intestinal Caco-2 cells.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Óleos/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Animais , Organismos Aquáticos/química , Células CACO-2 , Óleo de Fígado de Bacalhau , Euphausiacea/química , Suco Gástrico , Humanos , Óleos/química , Saliva
15.
Nutrients ; 9(1)2017 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-28075380

RESUMO

Dietary n-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are associated with reduction of inflammation, although the mechanisms are poorly understood, especially how the spleen, as a secondary lymphoid organ, is involved. To investigate the effects of EPA and DHA on spleen gene expression, male C57BL/6J mice were fed high fat diets (HFD) differing in fatty acid composition, either based on corn oil (HFD-CO), or CO enriched with 2 g/100 g EPA and DHA (HFD-ED), for eight weeks. Spleen tissue was analyzed using transcriptomics and for fatty acids profiling. Biological processes (BPs) related to the immune response, including T-cell receptor signaling pathway, T-cell differentiation and co-stimulation, myeloid dendritic cell differentiation, antigen presentation and processing, and the toll like receptor pathway were downregulated by HFD-ED compared with control and HFD-CO. These findings were supported by the down-regulation of NF-κB in HFD-ED compared with HFD-CO fed mice. Lower phospholipid arachidonic acid levels in HFD-ED compared with HFD-CO, and control mice suggest attenuation of pathways via prostaglandins and leukotrienes. The HFD-ED also upregulated BPs related to erythropoiesis and hematopoiesis compared with control and HFD-CO fed mice. Our findings suggest that EPA and DHA down-regulate the splenic immune response induced by HFD-CO, supporting earlier work that the spleen is a target organ for the anti-inflammatory effects of these n-3 fatty acids.


Assuntos
Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Eicosapentaenoico/farmacologia , Baço/efeitos dos fármacos , Baço/imunologia , Animais , Ácido Araquidônico/administração & dosagem , Dieta Hiperlipídica/efeitos adversos , Eritropoese/efeitos dos fármacos , Hematopoese/efeitos dos fármacos , Inflamação/tratamento farmacológico , Inflamação/etiologia , Leucotrienos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/genética , NF-kappa B/metabolismo , Fosfolipídeos/administração & dosagem , Prostaglandinas/metabolismo , Transcriptoma
16.
Nutrients ; 8(9)2016 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-27598198

RESUMO

Low-grade chronic inflammatory conditions such as ageing, obesity and related metabolic disorders are associated with deterioration of skeletal muscle (SkM). Human studies have shown that marine fatty acids influence SkM function, though the underlying mechanisms of action are unknown. As a model of diet-induced obesity, we fed C57BL/6J mice either a high fat diet (HFD) with purified marine fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) (HFD-ED), a HFD with corn oil, or normal mouse chow for 8 weeks; and used transcriptomics to identify the molecular effects of EPA and DHA on SkM. Consumption of ED-enriched HFD modulated SkM metabolism through increased gene expression of mitochondrial ß-oxidation and slow-fiber type genes compared with HFD-corn oil fed mice. Furthermore, HFD-ED intake increased nuclear localization of nuclear factor of activated T-cells (Nfatc4) protein, which controls fiber-type composition. This data suggests a role for EPA and DHA in mitigating some of the molecular responses due to a HFD in SkM. Overall, the results suggest that increased consumption of the marine fatty acids EPA and DHA may aid in the prevention of molecular processes that lead to muscle deterioration commonly associated with obesity-induced low-grade inflammation.


Assuntos
Dieta Hiperlipídica , Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Eicosapentaenoico/farmacologia , Inflamação/tratamento farmacológico , Músculo Esquelético/efeitos dos fármacos , Obesidade/tratamento farmacológico , Animais , Óleo de Milho , Modelos Animais de Doenças , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Inflamação/etiologia , Inflamação/genética , Inflamação/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias Musculares/efeitos dos fármacos , Mitocôndrias Musculares/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Obesidade/etiologia , Obesidade/genética , Obesidade/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Fatores de Tempo , Transcriptoma
17.
Food Funct ; 7(3): 1401-12, 2016 03.
Artigo em Inglês | MEDLINE | ID: mdl-26838473

RESUMO

In this work, we investigated lipid oxidation of cod liver oil during gastrointestinal (GI) digestion using two types of in vitro digestion models. In the first type of model, we used human GI juices, while we used digestive enzymes and bile from porcine origin in the second type of model. Human and porcine models were matched with respect to factors important for lipolysis, using a standardized digestion protocol. The digests were analysed for reactive oxidation products: malondialdehyde (MDA), 4-hydroxy-trans-2-nonenal (HNE), and 4-hydroxy-trans-2-hexenal (HHE) by liquid chromatography/atmospheric pressure chemical ionization-mass spectrometry (LC/APCI-MS), and for free fatty acids (FFA) obtained during the digestion by gas chromatography-mass spectrometry (GC-MS). The formation of the oxidation products MDA, HHE, and HNE was low during the gastric digestion, however, it increased during the duodenal digestion. The formation of the oxidation products reached higher levels when digestive juices of human origin were used (60 µM of MDA, 9.8 µM of HHE, and 0.36 µM of HNE) [corrected] compared to when using enzymes and bile of porcine origin (0.96, and 1.6 µM of MDA; 0.16, and 0.23 µM of HHE; 0.026, [corrected] and 0.005 µM of HNE, respectively, in porcine models I and II). In all models, FFA release was only detected during the intestinal step, and reached up to 31% of total fatty acids (FA). The findings in this work may be of importance when designing oxidation oriented lipid digestion studies.


Assuntos
Aldeídos/metabolismo , Óleo de Fígado de Bacalhau/metabolismo , Digestão , Trato Gastrointestinal/metabolismo , Malondialdeído/metabolismo , Suínos/metabolismo , Aldeídos/química , Animais , Óleo de Fígado de Bacalhau/química , Humanos , Malondialdeído/química , Oxirredução
18.
Food Chem ; 199: 782-90, 2016 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-26776035

RESUMO

Tartary buckwheat is a gluten-free crop with great potential as a wheat substitute. Iron (Fe) is an important mineral element in staple foods which is required in sufficient bioaccessible quantities. The aim of the study was to investigate how processing of grains into groats (hydrothermal processing to remove the husk) and sprouts (7-day-old seedlings) affected Fe speciation (Fe(2+) or Fe(3+)), Fe ligand composition and Fe bioaccessibility to human Caco-2 cells. Groats contained the least Fe (23.8 ± 1.65 mg kg(-1)) and the lowest amounts of Fe(2+) (8%). Grains and sprouts had comparable Fe concentrations (78.2 ± 2.65 and 68.9 ± 2.73 mg kg(-1)) and similar proportions of Fe(2+) (15% and 18%). The main ligands for Fe in Tartary buckwheat material were phytate and citrate. Phytate was less abundant in sprouts, which did not correlate with greater Fe bioaccessibility. Iron bioaccessibility was 4.5-fold greater for grains than groats, suggesting that Fe is more bioaccessible in the husk than in the rest of the grain.


Assuntos
Células CACO-2/química , Fagopyrum/química , Ferro/metabolismo , Grão Comestível , Germinação , Humanos , Plântula
19.
Eur J Nutr ; 55(1): 373-82, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25672527

RESUMO

BACKGROUND: Lactic fermentation of foods increases the availability of iron as shown in a number of studies throughout the years. Several explanations have been provided such as decreased content of inhibitory phytate, increased solubility of iron, and increased content of lactic acid in the fermented product. However, to our knowledge, there are no data to support that the bioavailability of iron is affected by lactic fermentation. OBJECTIVES: The objective of the present study was to investigate whether the bioavailability of iron from a vegetable mix was affected by lactic fermentation and to propose a mechanism for such an event, by conducting human and cell (Caco-2, HepG2) studies and iron speciation measurements (voltammetry). We also investigated whether the absorption of zinc was affected by the lactic fermentation. RESULTS: In human subjects, we observed that lactic-fermented vegetables served with both a high-phytate and low-phytate meal increased the absorption of iron, but not zinc. In vitro digested fermented vegetables were able to provoke a greater hepcidin response per ng Fe than fresh vegetables, indicating that Fe in the fermented mixes was more bioavailable, independent on the soluble Fe content. We measured that hydrated Fe(3+) species were increased after the lactic fermentation, while there was no significant change in hydrated Fe(2+). Furthermore, lactate addition to Caco-2 cells did not affect ferritin formation in response to Fe nor did lactate affect the hepcidin response in the Caco-2/HepG2 cell system. CONCLUSIONS: The mechanism for the increased bioavailability of iron from lactic-fermented vegetables is likely an effect of the increase in ferric iron (Fe(3+)) species caused by the lactic fermentation. No effect on zinc bioavailability was observed.


Assuntos
Ferro da Dieta/farmacocinética , Ácido Láctico/metabolismo , Adulto , Disponibilidade Biológica , Células CACO-2 , Relação Dose-Resposta a Droga , Feminino , Fermentação , Ferritinas/metabolismo , Manipulação de Alimentos , Células Hep G2 , Hepcidinas/metabolismo , Humanos , Ferro da Dieta/administração & dosagem , Ferro da Dieta/análise , Masculino , Pessoa de Meia-Idade , Ácido Fítico/administração & dosagem , Ácido Fítico/análise , Ácido Fítico/farmacocinética , Verduras/química , Adulto Jovem , Zinco/administração & dosagem , Zinco/farmacocinética
20.
Nutrients ; 7(4): 2134-44, 2015 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-25816160

RESUMO

The enzyme transglutaminase 2 (TG2) plays a crucial role in the initiation of celiac disease by catalyzing the deamidation of gluten peptides. In susceptible individuals, the deamidated peptides initiate an immune response leading to celiac disease. Several studies have addressed lactic fermentation plus addition of enzymes as a means to degrade gluten in order to prevent adverse response in celiacs. Processing for complete gluten degradation is often harsh and is not likely to yield products that are of comparable characteristics as their gluten-containing counterparts. We are concerned that incomplete degradation of gluten may have adverse effects because it leads to more available TG2-binding sites on gluten peptides. Therefore, we have investigated how lactic acid fermentation affects the potential binding of TG2 to gluten protein in wheat flour by means of estimating TG2-mediated transamidation in addition to measuring the available TG2-binding motif QLP, in α2-gliadin. We show that lactic fermentation of wheat flour, as slurry or as part of sourdough bread, did not decrease the TG2-mediated transamidation, in the presence of a primary amine, to an efficient level (73%-102% of unfermented flour). Nor did the lactic fermentation decrease the available TG2 binding motif QLP in α2-gliadin to a sufficient extent in sourdough bread (73%-122% of unfermented control) to be useful for celiac safe food.


Assuntos
Fermentação , Farinha/análise , Proteínas de Ligação ao GTP/metabolismo , Gliadina/metabolismo , Glutens/metabolismo , Transglutaminases/metabolismo , Triticum/química , Pão/análise , Proteínas de Transporte/metabolismo , Doença Celíaca , Ácido Láctico/metabolismo , Lactobacillus/metabolismo , Peptídeos/metabolismo , Proteína 2 Glutamina gama-Glutamiltransferase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...