Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Microbiol ; 114(1): 17-30, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32080908

RESUMO

Class I benzoyl-CoA reductases (BCRs) are oxygen-sensitive key enzymes in the degradation of monocyclic aromatic compounds in anaerobic prokaryotes. They catalyze the ATP-dependent reductive dearomatization of their substrate to cyclohexa-1,5-diene-1-carboxyl-CoA (1,5-dienoyl-CoA). An aromatizing 1,5-dienoyl-CoA oxidase (DCO) activity has been proposed to protect BCRs from oxidative damage, however, the gene and its product involved have not been identified, yet. Here, we heterologously produced a DCO from the hyperthermophilic euryarchaeon Ferroglobus placidus that coupled the oxidation of two 1,5-dienoyl-CoA to benzoyl-CoA to the reduction of O2 to water at 80°C. DCO showed similarities to members of the old yellow enzyme family and contained FMN, FAD and an FeS cluster as cofactors. The O2 -dependent activation of inactive, reduced DCO is assigned to a redox thiol switch at Eo ' = -3 mV. We propose a catalytic cycle in which the active site FMN/disulfide redox centers are reduced by two 1,5-dienoyl-CoA (reductive half-cycle), followed by two consecutive two-electron transfer steps to molecular oxygen via peroxy- and hydroxyflavin intermediates yielding water (oxidative half-cycle). This work identified the enzyme involved in a unique oxygen detoxification process for an oxygen-sensitive catabolic enzyme.


Assuntos
Archaeoglobales/metabolismo , Metabolismo Energético/fisiologia , Hidroliases/metabolismo , Hidrocarbonetos Aromáticos/metabolismo , Oxigênio/metabolismo , Archaeoglobales/enzimologia , Archaeoglobales/genética , Domínio Catalítico/fisiologia , Dissulfetos/metabolismo , Flavinas/metabolismo , Hidroliases/genética , Hidrólise , Oxirredução
2.
Proc Natl Acad Sci U S A ; 115(49): E11455-E11464, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30459276

RESUMO

Photorespiration recycles ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) oxygenation product, 2-phosphoglycolate, back into the Calvin Cycle. Natural photorespiration, however, limits agricultural productivity by dissipating energy and releasing CO2 Several photorespiration bypasses have been previously suggested but were limited to existing enzymes and pathways that release CO2 Here, we harness the power of enzyme and metabolic engineering to establish synthetic routes that bypass photorespiration without CO2 release. By defining specific reaction rules, we systematically identified promising routes that assimilate 2-phosphoglycolate into the Calvin Cycle without carbon loss. We further developed a kinetic-stoichiometric model that indicates that the identified synthetic shunts could potentially enhance carbon fixation rate across the physiological range of irradiation and CO2, even if most of their enzymes operate at a tenth of Rubisco's maximal carboxylation activity. Glycolate reduction to glycolaldehyde is essential for several of the synthetic shunts but is not known to occur naturally. We, therefore, used computational design and directed evolution to establish this activity in two sequential reactions. An acetyl-CoA synthetase was engineered for higher stability and glycolyl-CoA synthesis. A propionyl-CoA reductase was engineered for higher selectivity for glycolyl-CoA and for use of NADPH over NAD+, thereby favoring reduction over oxidation. The engineered glycolate reduction module was then combined with downstream condensation and assimilation of glycolaldehyde to ribulose 1,5-bisphosphate, thus providing proof of principle for a carbon-conserving photorespiration pathway.


Assuntos
Dióxido de Carbono/metabolismo , Glicolatos/metabolismo , Fotossíntese/fisiologia , Simulação por Computador , Engenharia Metabólica , Modelos Biológicos , Engenharia de Proteínas , Ribulose-Bifosfato Carboxilase/metabolismo , Biologia Sintética
3.
PLoS One ; 12(7): e0181553, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28719632

RESUMO

Tumor cells have the capacity to secrete immunosuppressive substances in order to diminish dendritic cell (DC) activity and thereby escape from immune responses. The impact of mistletoe (Viscum album) extracts (VAE), which are frequently used as an additive anti-cancer therapy to stimulate the immune response, is still unknown. Using a human cellular system, the impact of two different VAE (VAEA + VAEI) on the maturation of human dendritic cells and on T cell function has been investigated using flow cytometry, automated fluorescence microscopy and cytokine bead array assays. Furthermore, we examined whether VAEI was able to counteract tumor-induced immunosuppression within this cellular system using a renal cancer cell model. The role of mistletoe lectin (ML) was analyzed using ML-specific antibodies and ML-depleted VAEI. VAEI and VAEA augmented the maturation of dendritic cells. VAEI abrogated tumor-induced immunosuppression of dendritic cells and both processes were partially mediated by ML since ML-depleted VAEI and ML-specific antibodies almost neutralized the rehabilitative effects of VAEI on DC maturation. Using these settings, co-culture experiments with purified CD4+ T cells had no influence on T cell proliferation and activation but did have an impact on IFN-γ secretion. The study provides a potential mode-of-action of VAE as an additive cancer therapy based on immunomodulatory effects. However, the impact on the in vivo situation has to be evaluated in further studies.


Assuntos
Tolerância Imunológica/efeitos dos fármacos , Extratos Vegetais/farmacologia , Viscum album/química , Adulto , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linhagem Celular Tumoral , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Humanos , Interferon gama/metabolismo , Lectinas/metabolismo , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...