Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 629(8010): 201-210, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38600376

RESUMO

Chimeric antigen receptor (CAR) T cell therapy has transformed the treatment of haematological malignancies such as acute lymphoblastic leukaemia, B cell lymphoma and multiple myeloma1-4, but the efficacy of CAR T cell therapy in solid tumours has been limited5. This is owing to a number of factors, including the immunosuppressive tumour microenvironment that gives rise to poorly persisting and metabolically dysfunctional T cells. Analysis of anti-CD19 CAR T cells used clinically has shown that positive treatment outcomes are associated with a more 'stem-like' phenotype and increased mitochondrial mass6-8. We therefore sought to identify transcription factors that could enhance CAR T cell fitness and efficacy against solid tumours. Here we show that overexpression of FOXO1 promotes a stem-like phenotype in CAR T cells derived from either healthy human donors or patients, which correlates with improved mitochondrial fitness, persistence and therapeutic efficacy in vivo. This work thus reveals an engineering approach to genetically enforce a favourable metabolic phenotype that has high translational potential to improve the efficacy of CAR T cells against solid tumours.


Assuntos
Proteína Forkhead Box O1 , Imunoterapia Adotiva , Neoplasias , Receptores de Antígenos Quiméricos , Células-Tronco , Linfócitos T , Humanos , Camundongos , Linhagem Celular Tumoral , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética , Mitocôndrias/metabolismo , Fenótipo , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/citologia , Microambiente Tumoral/imunologia , Células-Tronco/citologia , Células-Tronco/imunologia , Células-Tronco/metabolismo , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/terapia
2.
Nat Commun ; 14(1): 6990, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37914685

RESUMO

There is significant clinical interest in targeting adenosine-mediated immunosuppression, with several small molecule inhibitors having been developed for targeting the A2AR receptor. Understanding of the mechanism by which A2AR is regulated has been hindered by difficulty in identifying the cell types that express A2AR due to a lack of robust antibodies for these receptors. To overcome this limitation, here an A2AR eGFP reporter mouse is developed, enabling the expression of A2AR during ongoing anti-tumor immune responses to be assessed. This reveals that A2AR is highly expressed on all tumor-infiltrating lymphocyte subsets including Natural Killer (NK) cells, NKT cells, γδ T cells, conventional CD4+ and CD8+ T lymphocytes and on a MHCIIhiCD86hi subset of type 2 conventional dendritic cells. In response to PD-L1 blockade, the emergence of PD-1+A2AR- cells correlates with successful therapeutic responses, whilst IL-18 is identified as a cytokine that potently upregulates A2AR and synergizes with A2AR deficiency to improve anti-tumor immunity. These studies provide insight into the biology of A2AR in the context of anti-tumor immunity and reveals potential combination immunotherapy approaches.


Assuntos
Neoplasias , Animais , Camundongos , Citocinas/metabolismo , Imunidade , Imunoterapia , Linfócitos do Interstício Tumoral , Neoplasias/genética , Neoplasias/metabolismo , Microambiente Tumoral
3.
Molecules ; 26(5)2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33652632

RESUMO

The use of bioresorbable fracture fixation plates made of aliphatic polyesters have good potential due to good biocompatibility, reduced risk of stress-shielding, and eliminated need for plate removal. However, polyesters are ductile, and their handling properties are limited. We suggested an alternative, PLAMA (PolyLActide functionalized with diMethAcrylate), for the use as the matrix phase for the novel concept of the in situ curable bioresorbable load-bearing composite plate to reduce the limitations of conventional polyesters. The purpose was to obtain a preliminary understanding of the chemical and physical properties and the biological safety of PLAMA from the prospective of the novel concept. Modifications with different molecular masses (PLAMA-500 and PLAMA-1000) were synthesized. The efficiency of curing was assessed by the degree of convergence (DC). The mechanical properties were obtained by tensile test and thermomechanical analysis. The bioresorbability was investigated by immersion in simulated body fluid. The biocompatibility was studied in cell morphology and viability tests. PLAMA-500 showed better DC and mechanical properties, and slower bioresorbability than PLAMA-1000. Both did not prevent proliferation and normal morphological development of cells. We concluded that PLAMA-500 has potential for the use as the matrix material for bioresorbable load-bearing composite fracture fixation plates.


Assuntos
Fixação de Fratura/métodos , Fraturas Ósseas/terapia , Lactose/análogos & derivados , Poliésteres/farmacologia , Ácidos Polimetacrílicos/farmacologia , Implantes Absorvíveis/efeitos adversos , Placas Ósseas/efeitos adversos , Proliferação de Células/efeitos dos fármacos , Humanos , Lactose/química , Lactose/farmacologia , Teste de Materiais , Poliésteres/química , Ácidos Polimetacrílicos/química , Estresse Mecânico , Resistência à Tração , Suporte de Carga
4.
Materials (Basel) ; 14(4)2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33557098

RESUMO

In strain-hardening cement-based composites (SHCC), polypropylene (PP) fibers are often used to provide ductility through micro crack-bridging, in particular when subjected to high loading rates. For the purposeful material design of SHCC, fundamental research is required to understand the failure mechanisms depending on the mechanical properties of the fibers and the fiber-matrix interaction. Hence, PP fibers with diameters between 10 and 30 µm, differing tensile strength levels and Young's moduli, but also circular and trilobal cross-sections were produced using melt-spinning equipment. The structural changes induced by the drawing parameters during the spinning process and surface modification by sizing were assessed in single-fiber tensile experiments and differential scanning calorimetry (DSC) of the fiber material. Scanning electron microscopy (SEM), atomic force microscopy (AFM) and contact angle measurements were applied to determine the topographical and wetting properties of the fiber surface. The fiber-matrix interaction under quasi-static and dynamic loading was studied in single-fiber pull-out experiments (SFPO). The main findings of microscale characterization showed that increased fiber tensile strength in combination with enhanced mechanical interlocking caused by high surface roughness led to improved energy absorption under dynamic loading. Further enhancement could be observed in the change from a circular to a trilobal fiber cross-section.

5.
Materials (Basel) ; 13(17)2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32825486

RESUMO

In this paper, we report on the use of amorphous lignin, a waste by-product of the paper industry, for the production of high performance carbon fibers (CF) as precursor with improved thermal stability and thermo-mechanical properties. The precursor was prepared by blending of lignin with polyacrylonitrile (PAN), which was previously dissolved in an ionic liquid. The fibers thus produced offered very high thermal stability as compared with the fiber consisting of pure PAN. The molecular compatibility, miscibility, and thermal stability of the system were studied by means of shear rheological measurements. The achieved mechanical properties were found to be related to the temperature-dependent relaxation time (consistence parameter) of the spinning dope and the diffusion kinetics of the ionic liquids from the fibers into the coagulation bath. Furthermore, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and dynamic mechanical tests (DMA) were utilized to understand in-depth the thermal and the stabilization kinetics of the developed fibers and the impact of lignin on the stabilization process of the fibers. Low molecular weight lignin increased the thermally induced physical shrinkage, suggesting disturbing effects on the semi-crystalline domains of the PAN matrix, and suppressed the chemically induced shrinkage of the fibers. The knowledge gained throughout the present paper allows summarizing a novel avenue to develop lignin-based CF designed with adjusted thermal stability.

6.
ACS Omega ; 5(31): 19639-19653, 2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32803059

RESUMO

Microencapsulated phase change materials (PCMs) are attracting increasing attention as functional fillers in polymer matrices, to produce smart thermoregulating composites for applications in thermal energy storage (TES) and thermal management. In a polymer composite, the filler-matrix interfacial adhesion plays a fundamental role in the thermomechanical properties. Hence, this work aims to modify the surface of commercial PCM microcapsules through the formation of a layer of polydopamine (PDA), a bioinspired polymer that is emerging as a powerful tool to functionalize chemically inert surfaces due to its versatility and great adhesive potential in many different materials. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) evidenced that after PDA coating, the surface roughness increased from 9 to 86 nm, which is beneficial, as it allows a further increase in the interfacial interaction by mechanical interlocking. Spectroscopic techniques allowed investigating the surface chemistry and identifying reactive functional groups of the PDA layer and highlighted that, unlike the uncoated microcapsules, the PDA layer is able to react with oxirane groups, thereby forming a covalent bond with the epoxy matrix. Hot-stage optical microscopy and differential scanning calorimetry (DSC) highlighted that the PDA modification does not hinder the melting/crystallization process of the paraffinic core. Finally, SEM micrographs of the cryofracture surface of epoxy composites containing neat or PDA-modified microcapsules clearly evidenced improved adhesion between the capsule shell and the epoxy matrix. These results showed that PDA is a suitable coating material with considerable potential for increasing the interfacial adhesion between an epoxy matrix and polymer microcapsules with low surface reactivity. This is remarkably important not only for this specific application but also for other classes of composite materials. Future studies will investigate how the deposition parameters affect the morphology, roughness, and thickness of the PDA layer and how the layer properties influence the capsule-matrix adhesion.

7.
Materials (Basel) ; 12(4)2019 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-30769787

RESUMO

In this paper, the oxy-fluorination process and the influence of different concentrations of fluorine and oxygen in the gas phase on the physicochemical properties of polyacrylonitrile(PAN)-based carbon fibers are described. The properties of the treated carbon structures are determined by zeta potential and tensiometry measurements. In addition, changes in surface composition and morphology are investigated by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). Adhesion properties are characterized by the single fiber pull-out (SFPO) test. Furthermore, changes in intrinsic properties are described by means of tensile and density measurements. After a primary desizing effect by oxy-fluorination, an increased number of oxygen-containing surface functional groups could be detected, which led to more debonding work in SFPOs with an epoxy-based matrix. It was also shown that the polar surface energy grows with rising fluorine concentration in the reaction gas mixture. In addition, a minor increase of ~10% in the maximum strength of PAN-based carbon fibers is detected by single fiber tensile measurements after oxy-fluorination with a fluorine content of 5% in the reaction mixture.

8.
Materials (Basel) ; 11(11)2018 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-30424559

RESUMO

To achieve good mechanical properties of carbon fibre-reinforced polycarbonate composites, the fibre-matrix adhesion must be dialled to an optimum level. The electrolytic surface treatment of carbon fibres during their production is one of the possible means of adapting the surface characteristics of the fibres. The production of a range of tailored fibres with varying surface treatments (adjusting the current, potential, and conductivity) was followed by contact angle, inverse gas chromatography and X-ray photoelectron spectroscopy measurements, which revealed a significant increase in polarity and hydroxyl, carboxyl, and nitrile groups on the fibre surface. Accordingly, an increase in the fibre-matrix interaction indicated by a higher interfacial shear strength was observed with the single fibre pull-out force-displacement curves. The statistical analysis identified the correlation between the process settings, fibre surface characteristics, and the performance of the fibres during single fibre pull-out testing.

9.
ScientificWorldJournal ; 2013: 703708, 2013 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-24348181

RESUMO

The current paper provides an overview to emphasize the role of functionalization of multiwalled carbon nanotubes (MWCNTs) in manipulating cure kinetics of epoxy nanocomposites, which itself determines ultimate properties of the resulting compound. In this regard, the most commonly used functionalization schemes, that is, carboxylation and amidation, are thoroughly surveyed to highlight the role of functionalized nanotubes in controlling the rate of autocatalytic and vitrification kinetics. The current literature elucidates that the mechanism of curing in epoxy/MWCNTs nanocomposites remains almost unaffected by the functionalization of carbon nanotubes. On the other hand, early stage facilitation of autocatalytic reactions in the presence of MWCNTs bearing amine groups has been addressed by several researchers. When carboxylated nanotubes were used to modify MWCNTs, the rate of such reactions diminished as a consequence of heterogeneous dispersion within the epoxy matrix. At later stages of curing, however, the prolonged vitrification was seen to be dominant. Thus, the type of functional groups covalently located on the surface of MWCNTs directly affects the degree of polymer-nanotube interaction followed by enhancement of curing reaction. Our survey demonstrated that most widespread efforts ever made to represent multifarious surface-treated MWCNTs have not been directed towards preparation of epoxy nanocomposites, but they could result in property synergism.


Assuntos
Nanotubos de Carbono/química , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...