Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 16(6): 3011-3023, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38230693

RESUMO

Drinking water contamination, often caused by bacteria, leads to substantial numbers of diarrhea deaths each year, especially in developing regions. Human urine as a source of fertilizer, when handled improperly, can contaminate drinking water. One dominant bacterial pathogen in urine is Escherichia coli, which can trigger serious waterborne/foodborne diseases. Considering the prevalence of the multi-drug resistant extended-spectrum beta-lactamase (ESBL) producing E. coli, a rapid detection method for resistance is highly desired. In this work, we developed a method for quick identification of E. coli and, at the same time, capable of removal of general bacterial pathogens from human urine. A specific peptide GRHIFWRRGGGHKVAPR, reported to have a strong affinity to E. coli, was utilized to modify the PEGylated magnetic nanoclusters, resulting in a specific capture and enrichment of E. coli from the bacteria-spiked artificial urine. Subsequently, a novel luminescent probe was applied to rapidly identify the antimicrobial resistance of the collected E. coli within 30 min. These functionalized magnetic nanoclusters demonstrate a promising prospect to rapidly detect ESBL E. coli in urine and contribute to reducing drinking water contamination.


Assuntos
Água Potável , Infecções por Escherichia coli , Humanos , Escherichia coli , Antibacterianos/farmacologia , beta-Lactamases , Farmacorresistência Bacteriana , Bactérias , Fenômenos Magnéticos
2.
Biosens Bioelectron ; 222: 114962, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36495723

RESUMO

Urinary tract infections (UTIs) are among the most predominant microbial diseases, leading to substantial healthcare burdens and threatening human well-being. UTIs can become more critical when caused by Pseudomonas aeruginosa, particularly by antimicrobial-resistant types. Thereby a rapid diagnosis and identification of the antimicrobial-resistant P. aeruginosa can support and guide an efficient medication and an effective treatment toward UTIs. Herein, we designed a platform for prompt purification, and effective identification of P. aeruginosa to combat the notorious P. aeruginosa associated UTIs. A peptide (QRKLAAKLT), specifically binding to P. aeruginosa, was grafted onto PEGylated magnetic nanoclusters and enabled a successful capture and enrichment of P. aeruginosa from artificial human urine. Rapid identification of antimicrobial resistance of the enriched P. aeruginosa can be moreover accomplished within 30 min. These functionalized magnetic nanoclusters demonstrate a prominent diagnostic potential to combat P. aeruginosa associated UTIs, which can be extended to other P. aeruginosa involved infections.


Assuntos
Técnicas Biossensoriais , Infecções por Pseudomonas , Infecções Urinárias , Humanos , Antibacterianos/farmacologia , Pseudomonas aeruginosa , Farmacorresistência Bacteriana , Infecções Urinárias/diagnóstico , Infecções Urinárias/tratamento farmacológico , Infecções por Pseudomonas/diagnóstico , Infecções por Pseudomonas/tratamento farmacológico , Testes de Sensibilidade Microbiana
3.
ACS Sens ; 7(11): 3491-3500, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36278860

RESUMO

Sepsis, the systemic response to infection, is a life-threatening situation for patients and leads to high mortality, especially when caused by antimicrobial resistant pathogens. Prompt diagnosis and identification of the pathogenic bacteria, including their antibiotic resistance, are highly desired to yield a timely decision for treatment. Here, we aim to develop a platform for rapid isolation and efficient identification of Staphylococcus aureus, the most frequently occurring pathogen in sepsis. A peptide (VPHNPGLISLQG, SA5-1), specifically binding to S. aureus, was conjugated to the PEGylated magnetic nanoclusters, successfully enabling the specific capture and enrichment of S. aureus from blood serum. Consequently, fast detection of the antimicrobial resistance of the collected S. aureus was achieved within 30 min using a novel luminescent probe. These magnetic nanoclusters manifest a promising diagnostic prospect to combat sepsis.


Assuntos
Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Sepse , Infecções Estafilocócicas , Humanos , Staphylococcus aureus , Infecções Estafilocócicas/diagnóstico , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Antibacterianos/farmacologia , Sepse/diagnóstico , Fenômenos Magnéticos
4.
Nanoscale ; 14(19): 7163-7173, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35343985

RESUMO

Signal stability is crucial for an accurate diagnosis via magnetic particle imaging (MPI). However, MPI-tracer nanoparticles frequently agglomerate during their in vivo applications leading to particle interactions altering the signal. Here, we investigate the influence of such magnetic coupling phenomena on the MPI signal. We prepared Zn0.4Fe2.6O4 nanoparticles by flame spray synthesis and controlled their inter-particle distance by varying SiO2 coating thickness. The silica shell affected the magnetic properties indicating stronger particle interactions for a smaller inter-particle distance. The SiO2-coated Zn0.4Fe2.6O4 outperformed the bare sample in magnetic particle spectroscopy (MPS) in terms of signal/noise, however, the shell thickness itself only weakly influenced the MPS signal. To investigate the importance of magnetic coupling effects in more detail, we benchmarked the MPS signal of the bare and SiO2-coated Zn-ferrites against commercially available PVP-coated Fe3O4 nanoparticles in water and PBS. PBS is known to destabilize nanoparticle colloids mimicking in vivo-like agglomeration. The bare and coated Zn-ferrites showed excellent signal stability, despite their agglomeration in PBS. We attribute this to their process-intrinsic aggregated morphology formed during their flame-synthesis, which generates an MPS signal only little affected by PBS. On the other hand, the MPS signal of commercial PVP-coated Fe3O4 strongly decreased in PBS compared to water, indicating strongly changed particle interactions. The relevance of this effect was further investigated in a human cell model. For PVP-coated Fe3O4, we detected a strong discrepancy between the particle concentration obtained from the MPS signal and the actual concentration determined via ICP-MS. The same trend was observed during their MPI analysis; while SiO2-coated Zn-ferrites could be precisely located in water and PBS, PVP-coated Fe3O4 could not be detected in PBS at all. This drastically limits the sensitivity and also general applicability of these commercial tracers for MPI and illustrates the advantages of our flame-made Zn-ferrites concerning signal stability and ultimately diagnostic accuracy.

5.
ACS Appl Mater Interfaces ; 11(51): 48341-48351, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31747521

RESUMO

Extracorporeal blood purification has been applied to artificially support kidney or liver function. However, convection and diffusion based blood purification systems have limited removal rates for high molecular weight and hydrophobic molecules. This limitation is due to the finite volume of infusion and limited membrane permeability, respectively. Adsorption provides an attractive alternative for the removal of higher molecular weight compounds. The use of adsorption resins containing ion exchanging groups to capture specific molecules has become well-established. Instead of stationary adsorption resins, however, ion exchanging polymers may be immobilized on magnetic particles and serve as freely diffusing, mobile, high capacity solid phase of ion exchange chromatography. While small beads with high surface area are attractive in terms of mass transfer and binding, unifying high capturing capacity with rapid and quantitative bead recovery remains an issue. Therefore, most of the current magnetic ion exchangers are based on micron-sized beads or require long times to separate. In addition to unfavorable magnetic recovery rates, the usually poor cytocompatibility limits their applicability in biomedicine. Here, we report on the synthesis and performance of polycationic polymer coated magnetic nanoflowers (MNF) for highly efficacious anion capturing. We demonstrate accurate control over the polymer content and composition on the beads and show its direct influence on colloidal stability, capturing capacity and magnetic separability. We present the removal of clinically relevant targets by capturing bilirubin with capacities 2-fold higher than previous work as well as quantitative heparin removal. Additionally, we illustrate how copolymerization of poly(2-dimethylaminoethyl methacrylate) (PDMAEMA) with poly(ethylene glycol) methyl ether methacrylate (PEGMEMA) leads to improved cytocompatibility of the polymer-coated MNF capturing agents while retaining high capturing capacities. Taken together, we present a nanoparticle/polymer material, which upon future in vivo validation, unifies high binding capacities and magnetic separability for rapid toxin capturing and hence fulfills key requirements of clinical utility.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...