Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 87(3)2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33158901

RESUMO

Airborne disinfection of high-containment facilities before maintenance or between animal studies is crucial. Commercial spore carriers (CSC) coated with 106 spores of Geobacillus stearothermophilus are often used to assess the efficacy of disinfection. We used quantitative carrier testing (QCT) procedures to compare the sensitivity of CSC with that of surrogates for nonenveloped and enveloped viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), mycobacteria, and spores, to an aerosolized mixture of peroxyacetic acid and hydrogen peroxide (aPAA-HP). We then used the QCT methodology to determine relevant process parameters to develop and validate effective disinfection protocols (≥4-log10 reduction) in various large and complex facilities. Our results demonstrate that aPAA-HP is a highly efficient procedure for airborne room disinfection. Relevant process parameters such as temperature and relative humidity can be wirelessly monitored. Furthermore, we found striking differences in inactivation efficacies against some of the tested microorganisms. Overall, we conclude that dry fogging a mixture of aPAA-HP is highly effective against a broad range of microorganisms as well as material compatible with relevant concentrations. Furthermore, CSC are artificial bioindicators with lower resistance and thus should not be used for validating airborne disinfection when microorganisms other than viruses have to be inactivated.IMPORTANCE Airborne disinfection is not only of crucial importance for the safe operation of laboratories and animal rooms where infectious agents are handled but also can be used in public health emergencies such as the current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. We show that dry fogging an aerosolized mixture of peroxyacetic acid and hydrogen peroxide (aPAA-HP) is highly microbicidal, efficient, fast, robust, environmentally neutral, and a suitable airborne disinfection method. In addition, the low concentration of dispersed disinfectant, particularly for enveloped viral pathogens such as SARS-CoV-2, entails high material compatibility. For these reasons and due to the relative simplicity of the procedure, it is an ideal disinfection method for hospital wards, ambulances, public conveyances, and indoor community areas. Thus, we conclude that this method is an excellent choice for control of the current SARS-CoV-2 pandemic.


Assuntos
COVID-19/prevenção & controle , Desinfetantes/farmacologia , Desinfecção/métodos , Mycobacterium/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos , Esporos Bacterianos/efeitos dos fármacos , Aerossóis , Linhagem Celular , Descontaminação/métodos , Geobacillus stearothermophilus/efeitos dos fármacos , Peróxido de Hidrogênio , Tamanho da Partícula , Ácido Peracético , Vapor
2.
PLoS One ; 10(3): e0118230, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25786255

RESUMO

Manure from animal farms and sewage sludge contain pathogens and opportunistic organisms in various concentrations depending on the health of the herds and human sources. Other than for the presence of pathogens, these waste substances are excellent nutrient sources and constitute a preferred organic fertilizer. However, because of the pathogens, the risks of infection of animals or humans increase with the indiscriminate use of manure, especially liquid manure or sludge, for agriculture. This potential problem can increase with the global connectedness of animal herds fed imported feed grown on fields fertilized with local manures. This paper describes a simple, easy-to-use, low-tech hygienization method which conserves nutrients and does not require large investments in infrastructure. The proposed method uses the microbiotic shift during mesophilic fermentation of cow manure or sewage sludge during which gram-negative bacteria, enterococci and yeasts were inactivated below the detection limit of 3 log10 cfu/g while lactobacilli increased up to a thousand fold. Pathogens like Salmonella, Listeria monocytogenes, Staphylococcus aureus, E. coli EHEC O:157 and vegetative Clostridium perfringens were inactivated within 3 days of fermentation. In addition, ECBO-viruses and eggs of Ascaris suum were inactivated within 7 and 56 days, respectively. Compared to the mass lost through composting (15-57%), the loss of mass during fermentation (< 2.45%) is very low and provides strong economic and ecological benefits for this process. This method might be an acceptable hygienization method for developed as well as undeveloped countries, and could play a key role in public and animal health while safely closing the nutrient cycle by reducing the necessity of using energy-inefficient inorganic fertilizer for crop production.


Assuntos
Transmissão de Doença Infecciosa/prevenção & controle , Fermentação , Ácido Láctico/metabolismo , Esterco/microbiologia , Esgotos/microbiologia , Agricultura , Animais , Bactérias/isolamento & purificação , Bovinos , Fertilizantes , Humanos , Esterco/parasitologia , Esterco/virologia , Fenômenos Fisiológicos da Nutrição , Parasitos/isolamento & purificação , Esgotos/parasitologia , Esgotos/virologia , Leveduras/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...