Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Noncoding RNA ; 8(4)2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35893238

RESUMO

Understanding the epigenetic role of microRNAs (miRNAs) has been a critical development in the field of neuropsychiatry and in understanding their underlying pathophysiology. Abnormalities in miRNA expression are often seen as key to the pathogenesis of many stress-associated mental disorders, including major depressive disorder (MDD). Recent advances in omics biology have further contributed to this understanding and expanded the role of miRNAs in networking a diverse array of molecular pathways, which are essentially related to the stress adaptivity of a healthy brain. Studies have highlighted the role of many such miRNAs in causing maladaptive changes in the brain's stress axis. One such miRNA is miR-218, which is debated as a critical candidate for increased stress susceptibility. miR-218 is expressed throughout the brain, notably in the hippocampus and prefrontal cortex (PFC). It is expressed at various levels through life stages, as seen by adolescent and adult animal models. Until now, a minimal number of studies have been conducted on human subjects to understand its role in stress-related abnormalities in brain circuits. However, several studies, including animal and cell-culture models, have been used to understand the impact of miR-218 on stress response and hypothalamic-pituitary-adrenal (HPA) axis function. So far, expression changes in this miRNA have been found to regulate signaling pathways such as glucocorticoid signaling, serotonergic signaling, and glutamatergic signaling. Recently, the developmental role of miR-218 has generated interest, given its increasing expression from adolescence to adulthood and targeting the Netrin-1/DCC signaling pathway. Since miR-218 expression affects neuronal development and plasticity, it is expected that a change in miR-218 expression levels over the course of development may negatively impact the process and make individuals stress-susceptible in adulthood. In this review, we describe the role of miR-218 in stress-induced neuropsychiatric conditions with an emphasis on stress-related disorders.

2.
Mol Diagn Ther ; 24(3): 279-298, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32304043

RESUMO

Non-invasive peripheral biomarkers play a significant role in both disease diagnosis and progression. In the past few years, microRNA (miRNA) expression changes in circulating peripheral tissues have been found to be correlative with changes in neuronal tissues from patients with neuropsychiatric disorders. This is a notable quality of a biomolecule to be considered as a biomarker for both prognosis and diagnosis of disease. miRNAs, members of the small non-coding RNA family, have recently gained significant attention due to their ability to epigenetically influence almost every aspect of brain functioning. Empirical evidence suggests that miRNA-associated changes in the brain are often translated into behavioral changes. Current clinical understanding further implicates their role in the management of major psychiatric conditions, including major depressive disorder (MDD), bipolar disorder (BD), and schizophrenia (SZ). This review aims to critically evaluate the potential advantages and disadvantages of miRNAs as diagnostic/prognostic biomarkers in psychiatric disorders as well as in treatment response.


Assuntos
Biomarcadores , MicroRNA Circulante , Suscetibilidade a Doenças , Regulação da Expressão Gênica , Transtornos Mentais/diagnóstico , Transtornos Mentais/genética , MicroRNAs/genética , Perfilação da Expressão Gênica , Humanos , Transtornos Mentais/sangue , Transtornos Mentais/metabolismo , MicroRNAs/sangue , Plasticidade Neuronal , Prognóstico , Interferência de RNA , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...