Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
PeerJ ; 10: e14079, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36168432

RESUMO

Between 2011 and 2020, 6,790 visual observations of holopelagic Sargassum were recorded across the North Atlantic Ocean to describe regional distribution, presence, and aggregation state at hourly and 10 km scales. Influences of oceanographic region and wind/sea conditions as well as temporal trends were considered; marine megafauna associates documented the ecological value of aggregations. Holopelagic Sargassum was present in 64% of observations from the western North Atlantic. Dispersed holopelagic Sargassum fragments and clumps were found in 97% of positive observations whereas aggregated windrows (37%) and mats (1%) were less common. Most field observations noted holopelagic Sargassum in quantities below the AFAI algorithm detection limit for the MODIS sensor. Aggregation state patterns were similar across regions; windrow proportion increased with higher wind speeds. In 8 of 10 years in the Sargasso Sea holopelagic Sargassum was found in over 65% of observations. In contrast, the Tropical Atlantic and Caribbean Sea exhibited greater inter-annual variability (1-88% and 11-78% presence, respectively) that did not align with extremes in central Atlantic holopelagic Sargassum areal coverage determined from satellite observations. Megafauna association patterns varied by taxonomic group. While some study regions were impacted by holopelagic Sargassum dynamics in the equatorial Atlantic, the Sargasso Sea had consistently high presence and operated independently. Field observations capture important dynamics occurring at fine spatiotemporal scales, including transient aggregation processes and ecological value for megafauna associates, and therefore remain essential to future studies of holopelagic Sargassum.


Assuntos
Sargassum , Região do Caribe , Índias Ocidentais , Oceano Atlântico , Vento
2.
Ecol Evol ; 7(2): 516-525, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28116048

RESUMO

Over the past 5 years, massive accumulations of holopelagic species of the brown macroalga Sargassum in coastal areas of the Caribbean have created "golden tides" that threaten local biodiversity and trigger economic losses associated with beach deterioration and impact on fisheries and tourism. In 2015, the first report identifying the cause of these extreme events implicated a rare form of the holopelagic species Sargassum natans (form VIII). However, since the first mention of S. natans VIII in the 1930s, based solely on morphological characters, no molecular data have confirmed this identification. We generated full-length mitogenomes and partial chloroplast genomes of all representative holopelagic Sargassum species, S. fluitans III and S. natans I alongside the putatively rare S. natans VIII, to demonstrate small but consistent differences between S. natans I and VIII (7 bp differences out of the 34,727). Our comparative analyses also revealed that both S. natans I and S. natans VIII share a very close phylogenetic relationship with S. fluitans III (94- and 96-bp differences of 34,727). We designed novel primers that amplified regions of the cox2 and cox3 marker genes with consistent polymorphic sites that enabled differentiation between the two S. natans forms (I and VIII) from each other and both from S. fluitans III in over 150 Sargassum samples including those from the 2014 golden tide event. Despite remarkable gene synteny and sequence conservation, the three Sargassum forms differ in morphology, ecology, and distribution patterns, warranting more extensive interrogation of holopelagic Sargassum genomes as a whole.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...