Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 7333, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36443293

RESUMO

Brain Aß deposition is a key early event in the pathogenesis of Alzheimer´s disease (AD), but the long presymptomatic phase and poor correlation between Aß deposition and clinical symptoms remain puzzling. To elucidate the dependency of downstream pathologies on Aß, we analyzed the trajectories of cerebral Aß accumulation, Aß seeding activity, and neurofilament light chain (NfL) in the CSF (a biomarker of neurodegeneration) in Aß-precursor protein transgenic mice. We find that Aß deposition increases linearly until it reaches an apparent plateau at a late age, while Aß seeding activity increases more rapidly and reaches a plateau earlier, coinciding with the onset of a robust increase of CSF NfL. Short-term inhibition of Aß generation in amyloid-laden mice reduced Aß deposition and associated glial changes, but failed to reduce Aß seeding activity, and CSF NfL continued to increase although at a slower pace. When short-term or long-term inhibition of Aß generation was started at pre-amyloid stages, CSF NfL did not increase despite some Aß deposition, microglial activation, and robust brain Aß seeding activity. A dissociation of Aß load and CSF NfL trajectories was also found in familial AD, consistent with the view that Aß aggregation is not kinetically coupled to neurotoxicity. Rather, neurodegeneration starts when Aß seeding activity is saturated and before Aß deposition reaches critical (half-maximal) levels, a phenomenon reminiscent of the two pathogenic phases in prion disease.


Assuntos
Doença de Alzheimer , Amiloidose , Animais , Camundongos , Encéfalo , Progressão da Doença , Proteínas Amiloidogênicas , Inibição Psicológica , Camundongos Transgênicos
2.
Nat Neurosci ; 23(12): 1580-1588, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33199898

RESUMO

Amyloid-ß (Aß) deposits are a relatively late consequence of Aß aggregation in Alzheimer's disease. When pathogenic Aß seeds begin to form, propagate and spread is not known, nor are they biochemically defined. We tested various antibodies for their ability to neutralize Aß seeds before Aß deposition becomes detectable in Aß precursor protein-transgenic mice. We also characterized the different antibody recognition profiles using immunoprecipitation of size-fractionated, native, mouse and human brain-derived Aß assemblies. At least one antibody, aducanumab, after acute administration at the pre-amyloid stage, led to a significant reduction of Aß deposition and downstream pathologies 6 months later. This demonstrates that therapeutically targetable pathogenic Aß seeds already exist during the lag phase of protein aggregation in the brain. Thus, the preclinical phase of Alzheimer's disease-currently defined as Aß deposition without clinical symptoms-may be a relatively late manifestation of a much earlier pathogenic seed formation and propagation that currently escapes detection in vivo.


Assuntos
Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/antagonistas & inibidores , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Anticorpos Bloqueadores/farmacologia , Anticorpos Monoclonais Humanizados/farmacocinética , Anticorpos Monoclonais Humanizados/farmacologia , Química Encefálica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Proteínas de Neurofilamentos/líquido cefalorraquidiano , Placa Amiloide/patologia , Extratos de Tecidos/farmacologia
3.
Ann Neurol ; 86(4): 561-571, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31359452

RESUMO

OBJECTIVE: Clinical trials targeting ß-amyloid peptides (Aß) for Alzheimer disease (AD) failed for arguable reasons that include selecting the wrong stages of AD pathophysiology or Aß being the wrong target. Targeting Aß to prevent cerebral amyloid angiopathy (CAA) has not been rigorously followed, although the causal role of Aß for CAA and related hemorrhages is undisputed. CAA occurs with normal aging and to various degrees in AD, where its impact and treatment is confounded by the presence of parenchymal Aß deposition. METHODS: APPDutch mice develop CAA in the absence of parenchymal amyloid, mimicking hereditary cerebral hemorrhage with amyloidosis Dutch type (HCHWA-D). Mice were treated with a ß-site amyloid precursor protein cleaving enzyme 1 (BACE1) inhibitor. We used 3-dimensional ultramicroscopy and immunoassays for visualizing CAA and assessing Aß in cerebrospinal fluid (CSF) and brain. RESULTS: CAA onset in mice was at 22 to 24 months, first in frontal leptomeningeal and superficial cortical vessels followed by vessels penetrating the cortical layers. CSF Aß increased with aging followed by a decrease of both Aß40 and Aß42 upon CAA onset, supporting the idea that combined reduction of CSF Aß40 and Aß42 is a specific biomarker for vascular amyloid. BACE1 inhibitor treatment starting at CAA onset and continuing for 4 months revealed a 90% Aß reduction in CSF and largely prevented CAA progression and associated pathologies. INTERPRETATION: This is the first study showing that Aß reduction at early disease time points largely prevents CAA in the absence of parenchymal amyloid. Our observation provides a preclinical basis for Aß-reducing treatments in patients at risk of CAA and in presymptomatic HCHWA-D. ANN NEUROL 2019;86:561-571.


Assuntos
Peptídeos beta-Amiloides/líquido cefalorraquidiano , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Angiopatia Amiloide Cerebral/tratamento farmacológico , Progressão da Doença , Ácidos Picolínicos/uso terapêutico , Tiazinas/uso terapêutico , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Animais , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Biomarcadores/líquido cefalorraquidiano , Biomarcadores/metabolismo , Encéfalo/irrigação sanguínea , Feminino , Humanos , Camundongos , Camundongos Transgênicos , Fragmentos de Peptídeos/líquido cefalorraquidiano , Ácidos Picolínicos/farmacologia , Tiazinas/farmacologia
5.
EMBO Rep ; 18(9): 1536-1544, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28701326

RESUMO

Little is known about the extent to which pathogenic factors drive the development of Alzheimer's disease (AD) at different stages of the long preclinical and clinical phases. Given that the aggregation of the ß-amyloid peptide (Aß) is an important factor in AD pathogenesis, we asked whether Aß seeds from brain extracts of mice at different stages of amyloid deposition differ in their biological activity. Specifically, we assessed the effect of age on Aß seeding activity in two mouse models of cerebral Aß amyloidosis (APPPS1 and APP23) with different ages of onset and rates of progression of Aß deposition. Brain extracts from these mice were serially diluted and inoculated into host mice. Strikingly, the seeding activity (seeding dose SD50) in extracts from donor mice of both models reached a plateau relatively early in the amyloidogenic process. When normalized to total brain Aß, the resulting specific seeding activity sharply peaked at the initial phase of Aß deposition, which in turn is characterized by a temporary several-fold increase in the Aß42/Aß40 ratio. At all stages, the specific seeding activity of the APPPS1 extract was higher compared to that of APP23 brain extract, consistent with a more important contribution of Aß42 than Aß40 to seed activity. Our findings indicate that the Aß seeding potency is greatest early in the pathogenic cascade and diminishes as Aß increasingly accumulates in brain. The present results provide experimental support for directing anti-Aß therapeutics to the earliest stage of the pathogenic cascade, preferably before the onset of amyloid deposition.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Amiloidose/metabolismo , Encéfalo/metabolismo , Fatores Etários , Doença de Alzheimer/tratamento farmacológico , Amiloidose/tratamento farmacológico , Amiloidose/fisiopatologia , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Progressão da Doença , Humanos , Camundongos , Camundongos Transgênicos
6.
Alzheimers Dement ; 13(6): 701-709, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27750032

RESUMO

INTRODUCTION: The inhibition of the ß-site amyloid precursor protein-cleaving enzyme 1 (BACE1) is a main therapeutic approach for the treatment of Alzheimer's disease (AD). We previously reported an age-related increase of tau protein in the cerebrospinal fluid (CSF) of amyloid ß (Aß) precursor protein (APP) transgenic mice. METHODS: APP transgenic mice were treated with a potent BACE1 inhibitor. CSF tau and CSF Aß levels were assessed. A novel high-sensitivity tau sandwich immunoassay was developed. RESULTS: We demonstrate that long-term BACE1 inhibition prevents CSF tau increase both in early-depositing APP transgenic mice and APP transgenic mice with moderate Aß pathology. DISCUSSION: Our results demonstrate that BACE1 inhibition not only reduces Aß generation but also downstream AD pathophysiology. The tight correlation between Aß aggregation in brain and CSF tau levels renders CSF tau a valuable marker to predict the effectiveness of BACE1 inhibitors in current clinical trials.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Ácidos Picolínicos/farmacologia , Tiazinas/farmacologia , Proteínas tau/líquido cefalorraquidiano , Envelhecimento/efeitos dos fármacos , Envelhecimento/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Modelos Animais de Doenças , Feminino , Humanos , Imunoensaio , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Placa Amiloide/tratamento farmacológico , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Prosencéfalo/efeitos dos fármacos , Prosencéfalo/metabolismo , Prosencéfalo/patologia
8.
Neuron ; 91(1): 56-66, 2016 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-27292537

RESUMO

A majority of current disease-modifying therapeutic approaches for age-related neurodegenerative diseases target their characteristic proteopathic lesions (α-synuclein, Tau, Aß). To monitor such treatments, fluid biomarkers reflecting the underlying disease process are crucial. We found robust increases of neurofilament light chain (NfL) in CSF and blood in murine models of α-synucleinopathies, tauopathy, and ß-amyloidosis. Blood and CSF NfL levels were strongly correlated, and NfL increases coincided with the onset and progression of the corresponding proteopathic lesions in brain. Experimental induction of α-synuclein lesions increased CSF and blood NfL levels, while blocking Aß lesions attenuated the NfL increase. Consistently, we also found NfL increases in CSF and blood of human α-synucleinopathies, tauopathies, and Alzheimer's disease. Our results suggest that CSF and particularly blood NfL can serve as a reliable and easily accessible biomarker to monitor disease progression and treatment response in mouse models and potentially in human proteopathic neurodegenerative diseases.


Assuntos
Filamentos Intermediários/metabolismo , Doenças Neurodegenerativas/metabolismo , Proteínas de Neurofilamentos/sangue , Proteínas de Neurofilamentos/líquido cefalorraquidiano , Animais , Axônios/metabolismo , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Encéfalo/metabolismo , Encéfalo/patologia , Progressão da Doença , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Doenças Neurodegenerativas/diagnóstico , Doenças Neurodegenerativas/patologia , alfa-Sinucleína/metabolismo
9.
Artigo em Inglês | MEDLINE | ID: mdl-27270558

RESUMO

Since the discovery that prion diseases can be transmitted to experimental animals by inoculation with afflicted brain matter, researchers have speculated that the brains of patients suffering from other neurodegenerative diseases might also harbor causative agents with transmissible properties. Foremost among these disorders is Alzheimer's disease (AD), the most common cause of dementia in the elderly. A growing body of research supports the concept that the pathogenesis of AD is initiated and sustained by the endogenous, seeded misfolding and aggregation of the protein fragment amyloid-ß (Aß). At the molecular level, this mechanism of nucleated protein self-assembly is virtually identical to that of prions consisting of the prion protein (PrP). The formation, propagation, and spread of Aß seeds within the brain can thus be considered a fundamental feature of AD pathogenesis.


Assuntos
Doença de Alzheimer/etiologia , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Placa Amiloide/patologia , Príons/metabolismo , Doença de Alzheimer/patologia , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Humanos , Camundongos , Dobramento de Proteína
10.
Sci Rep ; 6: 21917, 2016 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-26912421

RESUMO

Melanocytes of the hair follicle produce melanin and are essential in determining the differences in hair color. Pigment cell-specific MELanocyte Protein (PMEL17) plays a crucial role in melanogenesis. One of the critical steps is the amyloid-like functional oligomerization of PMEL17. Beta Site APP Cleaving Enzyme-2 (BACE2) and γ-secretase have been shown to be key players in generating the proteolytic fragments of PMEL17. The ß-secretase (BACE1) is responsible for the generation of amyloid-ß (Aß) fragments in the brain and is therefore proposed as a therapeutic target for Alzheimer's disease (AD). Currently BACE1 inhibitors, most of which lack selectivity over BACE2, have demonstrated efficacious reduction of amyloid-ß peptides in animals and the CSF of humans. BACE2 knock-out mice have a deficiency in PMEL17 proteolytic processing leading to impaired melanin storage and hair depigmentation. Here, we confirm BACE2-mediated inhibition of PMEL17 proteolytic processing in vitro in mouse and human melanocytes. Furthermore, we show that wildtype as well as bace2(+/-) and bace2(-/-) mice treated with a potent dual BACE1/BACE2 inhibitor NB-360 display dose-dependent appearance of irreversibly depigmented hair. Retinal pigmented epithelium showed no morphological changes. Our data demonstrates that BACE2 as well as additional BACE1 inhibition affects melanosome maturation and induces hair depigmentation in mice.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Cabelo/metabolismo , Antígeno gp100 de Melanoma/metabolismo , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/genética , Peptídeos beta-Amiloides/metabolismo , Animais , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Ácido Aspártico Endopeptidases/genética , Western Blotting , Linhagem Celular Tumoral , Feminino , Cabelo/efeitos dos fármacos , Cabelo/patologia , Humanos , Masculino , Melaninas/metabolismo , Melanócitos/citologia , Melanócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia de Fluorescência , Fragmentos de Peptídeos/metabolismo , Ácidos Picolínicos/farmacologia , Pigmentação/efeitos dos fármacos , Prosencéfalo/metabolismo , Prosencéfalo/patologia , Inibidores de Proteases/farmacologia , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Tiazinas/farmacologia , Úvea/efeitos dos fármacos , Úvea/metabolismo , Úvea/patologia , Antígeno gp100 de Melanoma/antagonistas & inibidores
11.
Nat Neurosci ; 18(11): 1559-61, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26352792

RESUMO

Cerebral ß-amyloidosis is induced by inoculation of Aß seeds into APP transgenic mice, but not into App(-/-) (APP null) mice. We found that brain extracts from APP null mice that had been inoculated with Aß seeds up to 6 months previously still induced ß-amyloidosis in APP transgenic hosts following secondary transmission. Thus, Aß seeds can persist in the brain for months, and they regain propagative and pathogenic activity in the presence of host Aß.


Assuntos
Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Placa Amiloide/metabolismo , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/administração & dosagem , Precursor de Proteína beta-Amiloide/deficiência , Precursor de Proteína beta-Amiloide/metabolismo , Amiloidose/patologia , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Placa Amiloide/patologia
12.
EMBO Mol Med ; 7(7): 895-903, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25978969

RESUMO

Abnormalities in brains of Alzheimer's disease (AD) patients are thought to start long before the first clinical symptoms emerge. The identification of affected individuals at this 'preclinical AD' stage relies on biomarkers such as decreased levels of the amyloid-ß peptide (Aß) in the cerebrospinal fluid (CSF) and positive amyloid positron emission tomography scans. However, there is little information on the longitudinal dynamics of CSF biomarkers, especially in the earliest disease stages when therapeutic interventions are likely most effective. To this end, we have studied CSF Aß changes in three Aß precursor protein transgenic mouse models, focusing our analysis on the initial Aß deposition, which differs significantly among the models studied. Remarkably, while we confirmed the CSF Aß decrease during the extended course of brain Aß deposition, a 20-30% increase in CSF Aß40 and Aß42 was found around the time of the first Aß plaque appearance in all models. The biphasic nature of this observed biomarker changes stresses the need for longitudinal biomarker studies in the clinical setting and the search for new 'preclinical AD' biomarkers at even earlier disease stages, by using both mice and human samples. Ultimately, our findings may open new perspectives in identifying subjects at risk for AD significantly earlier, and in improving the stratification of patients for preventive treatment strategies.


Assuntos
Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Líquido Cefalorraquidiano/química , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Diagnóstico Precoce , Humanos , Estudos Longitudinais , Camundongos , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...