Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(3): 3243-3252, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38190502

RESUMO

This work utilizes EIS to elucidate the impact of catalyst-ionomer interactions and cathode hydroxide ion transport resistance (RCL,OH-) on cell voltage and product selectivity for the electrochemical conversion of CO to ethylene. When using the same Cu catalyst and a Nafion ionomer, varying ink dispersion and electrode deposition methods results in a change of 2 orders of magnitude for RCL,OH- and ca. a 25% change in electrode porosity. Decreasing RCL,OH- results in improved ethylene Faradaic efficiency (FE), up to ∼57%, decrease in hydrogen FE, by ∼36%, and reduction in cell voltage by up to 1 V at 700 mA/cm2. Through the optimization of electrode fabrication conditions, we achieve a maximum of 48% ethylene with >90% FE for non-hydrogen products in a 25 cm2 membrane electrode assembly at 700 mA/cm2 and <3 V. Additionally, the implications of optimizing RCL,OH- is translated to other material requirements, such as anode porosity. We find that the best performing electrodes use ink dispersion and deposition techniques that project well into roll-to-roll processes, demonstrating the scalability of the optimized process.

2.
Angew Chem Int Ed Engl ; 60(40): 21732-21736, 2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34327797

RESUMO

Reducing CO2 to long-chain carbon products is attractive considering such products are typically more valuable than shorter ones. However, the best electrocatalyst for making such products from CO2 , copper, lacks selectivity. By studying alternate C2+ producing catalysts we can increase our mechanistic understanding, which is beneficial for improving catalyst performance. Therefore, we investigate CO reduction on silver, as density functional theory (DFT) results predict it to be good at forming ethanol. To address the current disagreement between DFT and experimental results (ethanol vs. no ethanol), we investigated CO reduction at higher surface coverage (by increasing pressure) to ascertain if desorption effects can explain the discrepancy. In terms of product trends, our results agree with the DFT-proposed acetaldehyde-like intermediate, yielding ethanol and propanol as C2+ products-making the CO2 electrochemistry of silver very similar to that of copper at sufficiently high coverage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA