Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E Stat Nonlin Soft Matter Phys ; 70(6 Pt 2): 066606, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15697525

RESUMO

The properties of waves guided by a plane-parallel finite slab of material having an ideal, homogeneous, and causal permittivity epsilon (f) , and permeability mu (f) , are investigated analytically and numerically through simulations done via a finite difference time domain (FDTD) code. Lorentzian functional forms are chosen for epsilon (f) and mu (f) . Wave guidance is examined for frequency ranges where the material in the slab is in the left-handed material (LHM) regime, i.e., the real parts of epsilon (f) and mu (f) are negative. It is shown that for reasonably thin slabs, and unlike ordinary materials, there is a unique power recirculation or feedback mechanism wherein the fields in the vicinity of the slab exchange power across the free-space/LHM slab interface. Within the LHM slab, the power travels backwards towards the source. This results in significant but bounded energy accumulation near the edge of the slab closest to the source. The energy exchange across the slab interface is necessary in order to sustain the resulting backward wave in the slab. Slabs thicker than a wavelength are also analyzed, leading to a reversal of the power loop description. The agreement between analytical and numerical results is excellent. They confirm the guided wave physics of a LHM slab.

2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 67(2 Pt 2): 025602, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12636738

RESUMO

We demonstrate that negative refraction occurs for both cw and pulsed electromagnetic waves when traversing from a "right-handed" (index > 0) to a "left-handed" (index < 0) material (LHM) which has causal dispersive intrinsic properties. We also demonstrate that a divergent line source spaced a distance H in front of a planar LHM slab and excited by either an impulse cw or a Gaussian frequency pulse is imaged at a distance H away, inside the LHM, and at H to the other side of the slab. The image size is approximately lambda consistent with limitations dictated by wave optics. We find no evidence of evanescent mode amplification. The studies were performed using numerical experiments with finite difference time domain solutions and incorporating a causal Lorentzian form for the frequency-dependent material properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...