Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proteins ; 86(10): 1064-1074, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30020551

RESUMO

Binding small ligands such as ions or macromolecules such as DNA, RNA, and other proteins is one important aspect of the molecular function of proteins. Many binding sites remain without experimental annotations. Predicting binding sites on a per-residue level is challenging, but if 3D structures are known, information about coevolving residue pairs (evolutionary couplings) can predict catalytic residues through mutual information. Here, we predicted protein binding sites from evolutionary couplings derived from a global statistical model using maximum entropy. Additionally, we included information from sequence variation. A simple method using a weighted sum over eight scores substantially outperformed random (F1 = 19.3% ± 0.7% vs F1 = 2% for random). Training a neural network on these eight scores (along with predicted solvent accessibility and conservation in protein families) improved substantially (F1 = 26.2% ±0.8%). Although the machine learning was limited by the small data set and possibly wrong annotations of binding sites, the predicted binding sites formed spatial clusters in the protein. The source code of the binding site predictions is available through GitHub: https://github.com/Rostlab/bindPredict.


Assuntos
Evolução Molecular , Proteínas/química , Sítios de Ligação , Evolução Biológica , DNA/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Bases de Dados de Proteínas , Entropia , Variação Genética , Humanos , Aprendizado de Máquina , Modelos Biológicos , Modelos Moleculares , Redes Neurais de Computação , Ligação Proteica , Proteínas/genética , Proteínas/metabolismo
2.
Sci Rep ; 7(1): 1608, 2017 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-28487536

RESUMO

Any two unrelated individuals differ by about 10,000 single amino acid variants (SAVs). Do these impact molecular function? Experimental answers cannot answer comprehensively, while state-of-the-art prediction methods can. We predicted the functional impacts of SAVs within human and for variants between human and other species. Several surprising results stood out. Firstly, four methods (CADD, PolyPhen-2, SIFT, and SNAP2) agreed within 10 percentage points on the percentage of rare SAVs predicted with effect. However, they differed substantially for the common SAVs: SNAP2 predicted, on average, more effect for common than for rare SAVs. Given the large ExAC data sets sampling 60,706 individuals, the differences were extremely significant (p-value < 2.2e-16). We provided evidence that SNAP2 might be closer to reality for common SAVs than the other methods, due to its different focus in development. Secondly, we predicted significantly higher fractions of SAVs with effect between healthy individuals than between species; the difference increased for more distantly related species. The same trends were maintained for subsets of only housekeeping proteins and when moving from exomes of 1,000 to 60,000 individuals. SAVs frozen at speciation might maintain protein function, while many variants within a species might bring about crucial changes, for better or worse.


Assuntos
Variação Genética , Humanos , Mutação/genética , Proteoma/metabolismo , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...