Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 44(20): 4925-4928, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31613230

RESUMO

In this Letter, we study theoretically a new setup allowing for the generation of temporal localized states (TLSs) and frequency combs. The setup is compact (a few centimeters) and can be implemented using established technologies, while offering tunable repetition rates and potentially high power operation. It consists of a vertically emitting micro-cavity, operated in the Gires-Tournois regime, containing a Kerr medium strong time-delayed optical feedback, and detuned optical injection. We disclose sets of multistable dark and bright TLSs coexisting on their respective bistable homogeneous backgrounds.

2.
Phys Rev Lett ; 123(4): 043902, 2019 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-31491283

RESUMO

Time-delayed dynamical systems materialize in situations where distant, pointwise, nonlinear nodes exchange information that propagates at a finite speed. However, they are considered devoid of dispersive effects, which are known to play a leading role in pattern formation and wave dynamics. We show how dispersion may appear naturally in delayed systems and we exemplify our result by studying theoretically and experimentally the influence of third order dispersion in a system composed of coupled optical microcavities. Dispersion-induced pulse satellites emerge asymmetrically and destabilize the mode-locking regime.

3.
Opt Lett ; 43(21): 5367-5370, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30383009

RESUMO

Temporal localized states (TLSs) are individually addressable structures traveling in optical resonators. They can be used to obtain bits of information and generate frequency combs with tunable spectral density. We show that a pair of specially designed nonlinear mirrors, a 1/2 vertical-cavity surface-emitting laser and a semiconductor saturable absorber, coupled in self-imaging conditions, can lead to the generation of such TLSs. Our results indicate how a conventional passive mode-locking scheme can be adapted to provide a robust and simple system emitting TLSs and paves the way towards the observation of three dimensional confined states, the so-called light bullets.

4.
Opt Lett ; 43(11): 2535-2538, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29856423

RESUMO

We present a modern approach for the analysis of passively mode-locked semiconductor lasers that allows for efficient parameter sweeps and time jitter analysis. It permits accessing the ultralow repetition rate regime where pulses become localized states. The analysis including slow (e.g., thermal) processes or transverse dynamics becomes feasible. Our method bridges the divide between the phenomenological, yet highly efficient, pulse iterative model that is the Haus master equation, and the more involved first principle descriptions relying on time-delayed equations. Our iterative functional mapping exploits the fundamental division of the mode-locking regime between fast and slow stages and allows computing the dynamics only in the pulse vicinity. Reductions of the simulation times and of the memory footprint up to two orders of magnitude are demonstrated. Finally, the mapping also provides a general framework for deducing the Haus master equation from first principle models based upon delayed differential equations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...