Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Thromb Haemost ; 123(5): 545-554, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36596447

RESUMO

BACKGROUND AND AIM: The ability to recognize and monitor atherosclerotic lesion development using noninvasive imaging is crucial in preventive cardiology. The aim of the present study was to establish a protocol for longitudinal monitoring of plaque lipid, collagen, and macrophage burden as well as of endothelial permeability. METHODS AND RESULTS: Photoacoustic signals derived from endogenous or exogenous dyes assessed in vivo, in plaques of albino Apoe -/- mice, correlated with lesion characteristics obtained after histomorphometric and immunofluorescence analyses, thus supporting the validity of our protocol. Using models of atheroprogression and regression, we could apply our imaging protocol to the longitudinal observation of atherosclerotic lesion characteristics in mice. CONCLUSIONS: The present study shows an innovative approach to assess arterial inflammation in a non-invasive fashion, applicable to longitudinal analyses of changes of atherosclerotic lesion composition. Such approach could prove important in the preclinical testing of therapeutic interventions in mice carrying pre-established lesions.


Assuntos
Aterosclerose , Técnicas Fotoacústicas , Placa Aterosclerótica , Camundongos , Animais , Aterosclerose/patologia , Placa Aterosclerótica/patologia , Macrófagos/patologia , Diagnóstico por Imagem , Camundongos Knockout , Apolipoproteínas E/genética
2.
Biomedicines ; 9(4)2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33917642

RESUMO

Dysfunctional adipose tissue (AT) may contribute to the pathology of several metabolic diseases through altered lipid metabolism, insulin resistance, and inflammation. Atypical chemokine receptor 3 (ACKR3) expression was shown to increase in AT during obesity, and its ubiquitous elimination caused hyperlipidemia in mice. Although these findings point towards a role of ACKR3 in the regulation of lipid levels, the role of adipocyte-specific ACKR3 has not yet been studied exclusively in this context. In this study, we established adipocyte- and hepatocyte-specific knockouts of Ackr3 in ApoE-deficient mice in order to determine its impact on lipid levels under hyperlipidemic conditions. We show for the first time that adipocyte-specific deletion of Ackr3 results in reduced AT triglyceride and cholesterol content in ApoE-deficient mice, which coincides with increased peroxisome proliferator-activated receptor-γ (PPAR-γ) and increased Angptl4 expression. The role of adipocyte ACKR3 in lipid handling seems to be tissue-specific as hepatocyte ACKR3 deficiency did not demonstrate comparable effects. In summary, adipocyte-specific ACKR3 seems to regulate AT lipid levels in hyperlipidemic Apoe-/- mice, which may therefore be a significant determinant of AT health. Further studies are needed to explore the potential systemic or metabolic effects that adipocyte ACKR3 might have in associated disease models.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...