Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1011, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38307863

RESUMO

The reversible phase transitions in phase-change memory devices can switch on the order of nanoseconds, suggesting a close structural resemblance between the amorphous and crystalline phases. Despite this, the link between crystalline and amorphous tellurides is not fully understood nor quantified. Here we use in-situ high-temperature x-ray absorption spectroscopy (XAS) and theoretical calculations to quantify the amorphous structure of bulk and nanoscale GeTe. Based on XAS experiments, we develop a theoretical model of the amorphous GeTe structure, consisting of a disordered fcc-type Te sublattice and randomly arranged chains of Ge atoms in a tetrahedral coordination. Strikingly, our intuitive and scalable model provides an accurate description of the structural dynamics in phase-change memory materials, observed experimentally. Specifically, we present a detailed crystallization mechanism through the formation of an intermediate, partially stable 'ideal glass' state and demonstrate differences between bulk and nanoscale GeTe leading to size-dependent crystallization temperature.

2.
ACS Nano ; 18(1): 1063-1072, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38117038

RESUMO

Phase-change memory (PCM) is an emerging memory technology based on the resistance contrast between the crystalline and amorphous states of a material. Further development and realization of PCM as a mainstream memory technology rely on innovative materials and inexpensive fabrication methods. Here, we propose a generalizable and scalable solution-processing approach to synthesize phase-change telluride inks in order to meet demands for high-throughput material screening, increased energy efficiency, and advanced device architectures. Bulk tellurides, such as Sb2Te3, GeTe, Sc2Te3, and TiTe2, are dissolved and purified to obtain inks of molecular metal telluride complexes. This allowed us to unlock a wide range of solution-processed ternary tellurides by the simple mixing of binary inks. We demonstrate accurate and quantitative composition control, including prototype materials (Ge-Sb-Te) and emerging rare-earth-metal telluride-doped materials (Sc-Sb-Te). Spin-coating and annealing convert ink formulations into high-quality, phase-pure telluride films with preferred orientation along the (00l) direction. Deposition engineering of liquid tellurides enables thickness-tunable films, infilling of nanoscale vias, and film preparation on flexible substrates. Finally, we demonstrate cyclable and non-volatile prototype memory devices, achieving performance indicators such as resistance contrast and low reset energy on par with state-of-the-art sputtered PCM layers.

3.
ACS Nano ; 17(7): 6985-6997, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36971128

RESUMO

A structural change between amorphous and crystalline phase provides a basis for reliable and modular photonic and electronic devices, such as nonvolatile memory, beam steerers, solid-state reflective displays, or mid-IR antennas. In this paper, we leverage the benefits of liquid-based synthesis to access phase-change memory tellurides in the form of colloidally stable quantum dots. We report a library of ternary MxGe1-xTe colloids (where M is Sn, Bi, Pb, In, Co, Ag) and then showcase the phase, composition, and size tunability for Sn-Ge-Te quantum dots. Full chemical control of Sn-Ge-Te quantum dots permits a systematic study of structural and optical properties of this phase-change nanomaterial. Specifically, we report composition-dependent crystallization temperature for Sn-Ge-Te quantum dots, which is notably higher compared to bulk thin films. This gives the synergistic benefit of tailoring dopant and material dimension to combine the superior aging properties and ultrafast crystallization kinetics of bulk Sn-Ge-Te, while improving memory data retention due to nanoscale size effects. Furthermore, we discover a large reflectivity contrast between amorphous and crystalline Sn-Ge-Te thin films, exceeding 0.7 in the near-IR spectrum region. We utilize these excellent phase-change optical properties of Sn-Ge-Te quantum dots along with liquid-based processability for nonvolatile multicolor images and electro-optical phase-change devices. Our colloidal approach for phase-change applications offers higher customizability of materials, simpler fabrication, and further miniaturization to the sub-10 nm phase-change devices.

4.
Nanoscale ; 15(8): 3967-3977, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36723208

RESUMO

Formaldehyde is a toxic and carcinogenic indoor air pollutant. Promising for its routine detection are gas sensors based on localized surface plasmon resonance (LSPR). Such sensors trace analytes by converting tiny changes in the local dielectric environment into easily readable, optical signals. Yet, this mechanism is inherently non-selective to volatile organic compounds (like formaldehyde) and yields rarely detection limits below parts-per-million concentrations. Here, we reveal that chemical reaction-mediated LSPR with nanohybrids of Ag/AgOx core-shell clusters on TiO2 enables highly selective formaldehyde sensing down to 5 parts-per-billion (ppb). Therein, AgOx is reduced by the formaldehyde to metallic Ag resulting in strong plasmonic signal changes, as measured by UV/Vis spectroscopy and confirmed by X-ray diffraction. This interaction is highly selective to formaldehyde over other aldehydes, alcohols, ketones, aromatic compounds (as confirmed by high-resolution mass spectrometry), inorganics, and quite robust to relative humidity changes. Since this sensor works at room temperature, such LSPR nanohybrids are directly deposited onto flexible wristbands to quantify formaldehyde between 40-500 ppb at 50% RH, even with a widely available smartphone camera (Pearson correlation coefficient r = 0.998). Such chemoresponsive coatings open new avenues for wearable devices in environmental, food, health and occupational safety applications, as demonstrated by an early field test in the pathology of a local hospital.


Assuntos
Smartphone , Dispositivos Eletrônicos Vestíveis , Temperatura , Formaldeído/análise , Aldeídos
5.
Materials (Basel) ; 14(20)2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34683516

RESUMO

Noble metal additives are widely used to improve the performance of metal oxide gas sensors, most prominently with palladium on tin oxide. Here, we photodeposit different quantities of Pd (0-3 mol%) onto nanostructured SnO2 and determine their effect on sensing acetone, a critical tracer of lipolysis by breath analysis. We focus on understanding the effect of operating temperature on acetone sensing performance (sensitivity and response/recovery times) and its relationship to catalytic oxidation of acetone through a packed bed of such Pd-loaded SnO2. The addition of Pd can either boost or deteriorate the sensing performance, depending on its loading and operating temperature. The sensor performance is optimal at Pd loadings of less than 0.2 mol% and operating temperatures of 200-262.5 °C, where acetone conversion is around 50%.

6.
Anal Bioanal Chem ; 410(3): 863-868, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28971240

RESUMO

Lateral flow type detection is becoming interesting not only in regions with a poor medical infrastructure but also for practitioners in day-to-day clinical work or for veterinary control in case of possible epidemics. In this work, we describe the first steps of development of a multi-channel strip with potential internal calibration of multiparametric and colorimetric lateral flow assays for the simultaneous detection of the lipopolysaccharides (LPS) of Salmonella typhimurium (S. typhimurium) and Salmonella enteritidis (S. enteritidis). We structured four channels in the nitrocellulose membrane with a Yb:KGW solid-state femtosecond laser ("cold" ablation process) to form distinct tracks of porous material and used gold nanoparticles for the labeling of the antibodies. In addition, calibration curves of the spot intensities of both serovars are presented, and it was shown that no cross reactivity between the different capture antibodies and LPS occurred. Finally, we detected LPS of both Salmonella serovars simultaneously. The color changes (spot intensities of the reaction zones) were evaluated using the open-source image-processing program ImageJ. Graphical abstract Multiparametric testing, strip A was tested with LPS S. enteritidis ( c=0.01 g/L) and LPS S.typhimurium ( c=0.0001 g/L), strip B with LPS S. enteritidis ( c=0.001 g/L) and LPS S. typhimurium ( c=0.001g/L) and strip C with LPS S. enteritidis (c=0.0001 g/L) and LPS S. typhimurium ( c=0.01 g/L), and read-out.


Assuntos
Colorimetria/instrumentação , Lipopolissacarídeos/análise , Sistemas Automatizados de Assistência Junto ao Leito , Infecções por Salmonella/microbiologia , Salmonella enteritidis/isolamento & purificação , Salmonella typhimurium/isolamento & purificação , Colódio/química , Desenho de Equipamento , Humanos , Imunoensaio/instrumentação , Membranas Artificiais , Papel , Infecções por Salmonella/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...