Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anim Microbiome ; 2(1): 8, 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33499942

RESUMO

BACKGROUND: Compared to horses and ponies, donkeys have increased degradation of dietary fiber. The longer total mean retention time of feed in the donkey gut has been proposed to be the basis of this, because of the increased time available for feed to be acted upon by enzymes and the gut microbiota. However, differences in terms of microbial concentrations and/or community composition in the hindgut may also underpin the increased degradation of fiber in donkeys. Therefore, a study was conducted to assess if differences existed between the fecal microbiota of pony, donkey and hybrids derived from them (i.e. pony × donkey) when fed the same forage diet. RESULTS: Fecal community composition of prokaryotes and anaerobic fungi significantly differed between equine types. The relative abundance of two bacterial genera was significantly higher in donkey compared to both pony and pony x donkey: Lachnoclostridium 10 and 'probable genus 10' from the Lachnospiraceae family. The relative abundance of Piromyces was significantly lower in donkey compared to pony × donkey, with pony not significantly differing from either of the other equine types. In contrast, the uncultivated genus SK3 was only found in donkey (4 of the 8 animals). The number of anaerobic fungal OTUs was also significantly higher in donkey than in the other two equine types, with no significant differences found between pony and pony × donkey. Equine types did not significantly differ with respect to prokaryotic alpha diversity, fecal dry matter content or fecal concentrations of bacteria, archaea and anaerobic fungi. CONCLUSIONS: Donkey fecal microbiota differed from that of both pony and pony × donkey. These differences related to a higher relative abundance and diversity of taxa with known, or speculated, roles in plant material degradation. These findings are consistent with the previously reported increased fiber degradation in donkeys compared to ponies, and suggest that the hindgut microbiota plays a role. This offers novel opportunities for pony and pony × donkey to extract more energy from dietary fiber via microbial mediated strategies. This could potentially decrease the need for energy dense feeds which are a risk factor for gut-mediated disease.

2.
J Anim Sci ; 90(5): 1674-86, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22205663

RESUMO

At face value there are clear and established roles for prolactin (PRL) in the regulation of mammary gland growth, lactogenesis, and galactopoiesis. These actions of PRL do not occur in isolation; rather, they are finely attuned to and coordinated with many local, reproductive, and metabolic events in the female. Hence, to understand PRL action at the level of the mammary gland is to understand the systemic and local contexts in which it acts and functions. Herein we review the functions of PRL, its receptors, and the pathways leading to the phenotypes it evokes within the mammary glands, including growth and lactation, across a variety of species. At one level, the actions of PRL are mediated by several PRL receptor (PRLR) isoforms, including its long form and various short PRLR variants that are generated by alternative splicing in a species- and tissue-dependent manner. In turn, these PRLR activate a variety of intracellular signaling cascades. We also focus on how PRL coordinates with other endocrine cues to impart its effects on the mammary glands, where the ovarian hormones can independently and substantially modulate PRL action. Many of these effects of PRL are also realized at the local level of the mammary gland, either through the autocrine or paracrine synthesis of a multitude of molecules and transcription factors or through its effects on adjacent supporting tissues, including the mammary vasculature. Taken together, it is clear that PRL directs a variety of mechanisms during growth and function of the mammary gland and is deserving of its classification as the master hormone.


Assuntos
Bovinos/fisiologia , Lactação/fisiologia , Glândulas Mamárias Animais/crescimento & desenvolvimento , Glândulas Mamárias Animais/metabolismo , Prolactina/metabolismo , Animais , Feminino , Regulação da Expressão Gênica/fisiologia , Lactação/metabolismo , Prolactina/genética , Receptores da Prolactina/genética , Receptores da Prolactina/metabolismo
3.
Anim Genet ; 40(6): 909-16, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19719788

RESUMO

The aim of our study was to estimate effects of polymorphisms in the ATP-binding cassette G2 (ABCG2), fatty acid synthase (FASN), oxidized low-density lipoprotein receptor 1 (OLR1), peroxysome proliferator-activated receptor-gamma coactivator-1alpha (PPARGC1A), prolactin (PRL) and signal transducer and activator of transcription 5A (STAT5A) genes on milk production traits and detailed milk-fat composition. Milk-fat composition phenotypes were available for 1905 Dutch Holstein-Friesian cows. First, the presence of each SNP in the Dutch Holstein-Friesian population was evaluated by direct sequencing of the PCR product surrounding the SNP in 22 proven Dutch Holstein-Friesian bulls. The ABCG2 SNP did not segregate in the bull population. Second, we genotyped the cows for the FASN(g.16024G>A), FASN(g.17924A>G), OLR1(g.8232C>A), PPARGC1A(c.1790+514G>A), PPARGC1A(c.1892+19G>A), PRL(g.8398G>A) and STAT5A(g.9501G>A) polymorphisms, and estimated genotype effects on milk production traits and milk-fat composition. FASN(g.17924A>G) and OLR(g.8232C>A) had a significant effect (P < 0.05) on milk-fat percentage. However, we were not able to confirm results reported in the literature that showed effects of all evaluated polymorphisms on milk-fat percentage or milk-fat yield. All polymorphisms showed significant effects (P < 0.05) on milk-fat composition. The polymorphisms in FASN and STAT5A, which had an effect on C14:0 and were located on chromosome 19, could not fully explain the quantitative trait locus for C14:0 that was previously detected on chromosome 19 in a genome-wide scan using linkage analysis.


Assuntos
Bovinos/genética , Gorduras/análise , Leite/química , Polimorfismo Genético , Locos de Características Quantitativas , Animais , Leite/metabolismo
4.
J Dairy Sci ; 92(9): 4664-75, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19700730

RESUMO

A genome-wide scan was performed to identify quantitative trait loci (QTL) for short- and medium-chain fatty acids (expressed in wt/wt %). Milk samples were available from 1,905 cows from 398 commercial herds in the Netherlands, and milk-fat composition was measured by gas chromatography. DNA was available from 7 of the paternal half-sib families: 849 cows and their 7 sires. A genetic map was constructed comprising 1,341 SNP and 2,829 cM, with an average information content of 0.83. Multimarker interval mapping was used in an across-family regression on corrected phenotypes for the 7 half-sib families. Four QTL were found: on Bos taurus autosome (BTA) 6, a QTL was identified for C6:0 and C8:0; on BTA14, a QTL was identified for fat percentage, all odd-chain fatty acids, and C14:0, C16:0, C16:1, and their unsaturation indices; on BTA19, a QTL affected C14:0; and on BTA26, a QTL was identified for the monounsaturated fatty acids and their unsaturation indices. The QTL explained 3 to 19% of phenotypic variance. Furthermore, 49 traits with suggestive evidence for linkage were found on 21 chromosomes. Additional analyses revealed that the QTL on BTA14 was most likely caused by a mutation in DGAT1, whereas the QTL on BTA26 was most likely caused by a mutation in the SCD1 gene. Quantitative trait loci that affect specific fatty acids might increase the understanding of physiological processes regarding fat synthesis and the position of the causal genes.


Assuntos
Bovinos/genética , Gorduras/química , Ácidos Graxos/genética , Estudo de Associação Genômica Ampla , Leite/química , Locos de Características Quantitativas/genética , Animais , Feminino , Masculino , Fenótipo
5.
J Dairy Sci ; 92(9): 4676-82, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19700731

RESUMO

We present the results of a genome-wide scan to identify quantitative trait loci (QTL) that contribute to genetic variation in long-chain milk fatty acids. Milk-fat composition phenotypes were available on 1,905 Dutch Holstein-Friesian cows. A total of 849 cows and their 7 sires were genotyped for 1,341 single nucleotide polymorphisms across all Bos taurus autosomes (BTA). We detected significant QTL on BTA14, BTA15, and BTA16: for C18:1 cis-9, C18:1 cis-12, C18:2 cis-9,12, CLA cis-9,trans-11, C18:3 cis-9,12,15, the C18 index, the total index, total saturated fatty acids, total unsaturated fatty acids (UFA), and the ratio of saturated fatty acids:unsaturated fatty acids on BTA14; for C18:1 trans fatty acids on BTA15; and for the C18 and CLA indices on BTA16. The QTL explained 3 to 19% of the phenotypic variance. Suggestive QTL were found on 16 other chromosomes. The diacylglycerol acyltransferase 1 (DGAT1) K232A polymorphism on BTA14, which is known to influence fatty acid composition, most likely explains the QTL that was detected on BTA14.


Assuntos
Bovinos/genética , Gorduras/química , Ácidos Graxos/genética , Estudo de Associação Genômica Ampla , Leite/química , Locos de Características Quantitativas/genética , Animais , Diacilglicerol O-Aciltransferase/genética , Feminino , Masculino , Fenótipo
6.
J Dairy Sci ; 92(3): 1192-202, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19233813

RESUMO

The effects of beta-lactoglobulin (beta-LG), beta-casein (beta-CN), and kappa-CN variants and beta-kappa-CN haplotypes on the relative concentrations of the major milk proteins alpha-lactalbumin (alpha-LA), beta-LG, alpha(S1)-CN, alpha(S2)-CN, beta-CN, and kappa-CN and milk production traits were estimated in the milk of 1,912 Dutch Holstein-Friesian cows. We show that in the Dutch Holstein-Friesian population, the allele frequencies have changed in the past 16 years. In addition, genetic variants and casein haplotypes have a major impact on the protein composition of milk and explain a considerable part of the genetic variation in milk protein composition. The beta-LG genotype was associated with the relative concentrations of beta-LG (A >> B) and of alpha-LA, alpha(S1)-CN, alpha(S2)-CN, beta-CN, and kappa-CN (B > A) but not with any milk production trait. The beta-CN genotype was associated with the relative concentrations of beta-CN and alpha(S2)-CN (A(2) > A(1)) and of alpha(S1)-CN and kappa-CN (A(1) > A(2)) and with protein yield (A(2) > A(1)). The kappa-CN genotype was associated with the relative concentrations of kappa-CN (B > E > A), alpha(S2)-CN (B > A), alpha-LA, and alpha(S1)-CN (A > B) and with protein percentage (B > A). Comparing the effects of casein haplotypes with the effects of single casein variants can provide better insight into what really underlies the effect of a variant on protein composition. We conclude that selection for both the beta-LG genotype B and the beta-kappa-CN haplotype A(2)B will result in cows that produce milk that is more suitable for cheese production.


Assuntos
Bovinos/fisiologia , Proteínas do Leite/análise , Leite/química , Animais , Caseínas/genética , Bovinos/genética , Feminino , Frequência do Gene , Haplótipos , Lactoglobulinas/genética , Masculino
7.
J Dairy Sci ; 91(5): 2135-43, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18420645

RESUMO

With regard to human health aspects of milk fat, increasing the amount of unsaturated fatty acids in milk is an important selection objective. The cow's diet has an influence on the degree of unsaturation, but literature suggests that genetics also plays a role. To estimate genetic variation in milk fatty acid unsaturation indices, milk fatty acid composition of 1,933 Dutch Holstein Friesian heifers was measured and unsaturation indices were calculated. An unsaturation index represents the concentration of the unsaturated product proportional to the sum of the unsaturated product and the saturated substrate. Intraherd heritabilities were moderate, ranging from 0.23 +/- 0.07 for conjugated linoleic acid (CLA) index to 0.46 +/- 0.09 for C16 index. We genotyped the cows for the SCD1 A293V and DGAT1 K232A polymorphisms, which are known to alter milk fatty acid composition. Both genes explain part of the genetic variation in unsaturation indices. The SCD1 V allele is associated with lower C10, C12, and C14 indices, and with higher C16, C18, and CLA indices in comparison to the SCD1 A allele, with no differences in total unsaturation index. In comparison to the DGAT1 K allele, the DGAT1 A allele is associated with lower C10, C12, C14, and C16 indices and with higher C18, CLA, and total indices. We conclude that selective breeding can contribute to higher unsaturation indices, and that selective breeding can capitalize on genotypic information of both the SCD1 A293V and the DGAT1 K232A polymorphism.


Assuntos
Bovinos/genética , Diacilglicerol O-Aciltransferase/genética , Ácidos Graxos Insaturados/análise , Leite/química , Estearoil-CoA Dessaturase/genética , Alelos , Animais , Cruzamento/métodos , Diacilglicerol O-Aciltransferase/fisiologia , Feminino , Variação Genética , Genótipo , Ácidos Linoleicos Conjugados/análise , Fenótipo , Polimorfismo Genético , Seleção Genética , Estearoil-CoA Dessaturase/fisiologia
8.
Anim Genet ; 38(5): 467-73, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17894561

RESUMO

Dietary fat may play a role in the aetiology of many chronic diseases. Milk and milk-derived foods contribute substantially to dietary fat, but have a fat composition that is not optimal for human health. We measured the fat composition of milk samples in 1918 Dutch Holstein Friesian cows in their first lactation and estimated genetic parameters for fatty acids. Substantial genetic variation in milk-fat composition was found: heritabilities were high for short- and medium-chain fatty acids (C4:0-C16:0) and moderate for long-chain fatty acids (saturated and unsaturated C18). We genotyped 1762 cows for the DGAT1 K232A polymorphism, which is known to affect milk-fat percentage, to study the effect of the polymorphism on milk-fat composition. We found that the DGAT1 K232A polymorphism has a clear influence on milk-fat composition. The DGAT1 allele that encodes lysine (K) at position 232 (232K) is associated with more saturated fat; a larger fraction of C16:0; and smaller fractions of C14:0, unsaturated C18 and conjugated linoleic acid (P < 0.001). We conclude that selective breeding can make a significant contribution to change the fat composition of cow's milk.


Assuntos
Substituição de Aminoácidos/genética , Diacilglicerol O-Aciltransferase/genética , Diacilglicerol O-Aciltransferase/fisiologia , Gorduras/química , Variação Genética , Leite/química , Animais , Bovinos , Gorduras/metabolismo , Feminino , Leite/metabolismo , Polimorfismo Genético
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...