Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(26): 16743-16751, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38888092

RESUMO

Oriented attachment (OA) occurs when nanoparticles in solution align their crystallographic axes prior to colliding and subsequently fuse into single crystals. Traditional colloidal theories such as DLVO provide a framework for evaluating OA but fail to capture key particle interactions due to the atomistic details of both the crystal structure and the interfacial solution structure. Using zinc oxide as a model system, we investigated the effect of the solvent on short-ranged and long-ranged particle interactions and the resulting OA mechanism. In situ TEM imaging showed that ZnO nanocrystals in toluene undergo long-range attraction comparable to 1kT at separations of 10 nm and 3kT near particle contact. These observations were rationalized by considering non-DLVO interactions, namely, dipole-dipole forces and torques between the polar ZnO nanocrystals. Langevin dynamics simulations showed stronger interactions in toluene compared to methanol solvents, consistent with the experimental results. Concurrently, we performed atomic force microscopy measurements using ZnO-coated probes for the short-ranged interaction. Our data are relevant to another type of non-DLVO interaction, namely, the repulsive solvation force. Specifically, the solvation force was stronger in water compared to ethanol and methanol, due to the stronger hydrogen bonding and denser packing of water molecules at the interface. Our results highlight the importance of non-DLVO forces in a general framework for understanding and predicting particle aggregation and attachment.

2.
Langmuir ; 40(17): 8791-8805, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38597920

RESUMO

Classical theories of particle aggregation, such as Derjaguin-Landau-Verwey-Overbeek (DLVO), do not explain recent observations of ion-specific effects or the complex concentration dependence for aggregation. Thus, here, we probe the molecular mechanisms by which selected alkali nitrate ions (Na+, K+, and NO3-) influence aggregation of the mineral boehmite (γ-AlOOH) nanoparticles. Nanoparticle aggregation was analyzed using classical molecular dynamics (CMD) simulations coupled with the metadynamics rare event approach for stoichiometric surface terminations of two boehmite crystal faces. Calculated free energy landscapes reveal how electrolyte ions alter aggregation on different crystal faces relative to pure water. Consistent with experimental observations, we find that adding an electrolyte significantly reduces the energy barrier for particle aggregation (∼3-4×). However, in this work, we show this is due to the ions disrupting interstitial water networks, and that aggregation between stoichiometric (010) basal-basal surfaces is more favorable than between (001) edge-edge surfaces (∼5-6×) due to the higher interfacial water densities on edge surfaces. The interfacial distances in the interlayer between aggregated particles with electrolytes (∼5-10 Å) are larger than those in pure water (a few Ångströms). Together, aggregation/disaggregation in salt solutions is predicted to be more reversible due to these lower energy barriers, but there is uncertainty on the magnitudes of the energies that lead to aggregation at the molecular scale. By analyzing the peak water densities of the first monolayer of interstitial water as a proxy for solvent ordering, we find that the extent of solvent ordering likely determines the structures of aggregated states as well as the energy barriers to move between them. The results suggest a path for developing a molecular-level basis to predict the synergies between ions and crystal faces that facilitate aggregation under given solution conditions. Such fundamental understanding could be applied extensively to the aggregation and precipitation utilization in the biological, pharmaceutical, materials design, environmental remediation, and geological regimes.

3.
Chem Commun (Camb) ; 59(97): 14407-14410, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37975198

RESUMO

Predicting the behavior of oxyanions in radioactive waste stored at the Department of Energy legacy nuclear sites requires the development of novel analytical methods. This work demonstrates 15N pulsed field gradient nuclear magnetic resonance spectroscopy to quantify the diffusivity of nitrite. Experimental results, supported by molecular dynamics simulations, indicate that the diffusivity of free hydrated nitrite exceeds that of free hydrated sodium despite the greater hydrodynamic radius of nitrite. Investigations are underway to understand how the compositional and dynamical heterogeneities of the ion networks at high concentrations affect rheological and transport properties.

4.
J Colloid Interface Sci ; 652(Pt B): 1974-1983, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37690305

RESUMO

The van der Waals interaction between colloids and nanoparticles is one of the key components to understanding particle aggregation, attachment, and assembly. While the ubiquity of anisotropic particle shapes and surface roughness is well-recognized in nanocrystalline materials, the effects of both on van der Waals forces and torques have not been adequately investigated. In this study, we develop a numerical scheme to determine the van der Waals forces and torques between cubic particles with multiple configurations and relative orientations. Our results show that the van der Waals torque due to anisotropic particle shapes is appreciable at nearly all configurations and mutual angles, outcompeting Brownian torque for various materials systems and conditions. Surface roughness enhances this particle shape effect, resulting in stronger van der Waals interactions ascribed to protrusions on the surfaces. Moreover, a scaling analysis indicates that the surface roughness alters the separation dependence of the van der Waals force and, more importantly, significantly influences the dynamics of two approaching particles. Our results clearly demonstrate that surface roughness and anisotropic shape play a crucial role in the energetics and kinetics of various particle-scale and emergent phenomena, such as crystal growth by oriented attachment, nanomaterials synthesis and assembly, mud flow rheology, as well as the deposition of natural nanocrystals within the subsurface.

5.
Phys Chem Chem Phys ; 25(34): 22650-22661, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37592924

RESUMO

The emergence of cation-anion species, or contact ion pairs, is fundamental to understanding the physical properties of aqueous solutions when moving from the ideal, low-concentration limit to the manifestly non-ideal limits of very high solute concentration or constituent ion activity. We focus here on Zn halide solutions both as a model system and also as an exemplar of the applications spanning from (i) electrical energy storage via the paradigm of water in salt electrolyte (WiSE) to (ii) the physical chemistry of brines in geochemistry to (iii) the long-standing problem of nucleation. Using a combination of experimental and theoretical approaches we quantify the halide coordination number and changing coordination geometry without embedded use of theoretical equilibrium constants. These results and the associated methods, notably including the use of valence-to-core X-ray emission spectroscopy, provide new insights into the Zn halide system and new research directions in the physical chemistry of concentrated electrolytes.

6.
Chem Commun (Camb) ; 59(69): 10400-10403, 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37551780

RESUMO

Understanding multiple lengthscale correlations in the pair distribution functions (PDFs) of aq. electrolytes is a persistent challenge. Here, the coordination chemistry of polyoxoanions supports an ion-network of cation-coordination polyhedra in NaNO3(aq) and NaNO2(aq) that induce long-range solution structure. Oxygen correlations associated with Na+-coordination polyhedra have two characteristics lengthscales; 3.5-5.5 Å and 5.5-7.5 Å, the latter solely associated oligomers. The PDF contraction between 5.5-7.5 Å observed in many electrolytes is attributed to the distinct O⋯O correlation found in dimers and dimer subunits within oligomers.

7.
ACS Nano ; 17(16): 15556-15567, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37556761

RESUMO

Predicting nanoparticle aggregation and attachment phenomena requires a rigorous understanding of the interplay among crystal structure, particle morphology, surface chemistry, solution conditions, and interparticle forces, yet no comprehensive picture exists. We used an integrated suite of experimental, theoretical, and simulation methods to resolve the effect of solution pH on the aggregation of boehmite nanoplatelets, a case study with important implications for the environmental management of legacy nuclear waste. Real-time observations showed that the particles attach preferentially along the (010) planes at pH 8.5 and the (101) planes at pH 11. To rationalize these results, we established the connection between key physicochemical phenomena across the relevant length scales. Starting from molecular-scale simulations of surface hydroxyl reactivity, we developed an interfacial-scale model of the corresponding electrostatic potentials, with subsequent particle-scale calculations of the resulting driving forces allowing successful prediction of the attachment modes. Finally, we scaled these phenomena to understand the collective structure at the aggregate-scale. Our results indicate that facet-specific differences in surface chemistry produce heterogeneous surface charge distributions that are coupled to particle anisotropy and shape-dependent hydrodynamic forces, to play a key role in controlling aggregation behavior.

8.
J Phys Chem Lett ; 14(30): 6743-6748, 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37470756

RESUMO

Reactive force fields (RFFs) are an expedient approach to sample chemical reaction paths in complex systems, relative to density functional theory. However, there is continued need to improve efficiencies, specifically in systems that have slow transverse degrees of freedom, as in highly viscous and superconcentrated solutions. Here, we present an RFF that is differentiated from current models (e.g., ReaxFF) by omitting explicit dependence on the atom coordination and employing a small parameter set based on Lennard-Jones, Gaussian, and Stillinger-Weber potentials. The model was parametrized from AIMD simulation data and is used to model aluminate reactivity in sodium hydroxide solutions with extensive validation against experimental radial distribution functions, computed free energy profiles for oligomerization, and formation energies. The model enables simulation of early stage Al(OH)3 nucleation which has significant relevance to industrial processing of aluminum and has a computational cost that is reduced by 1 order of magnitude relative to ReaxFF.

9.
J Phys Chem A ; 127(25): 5458-5469, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37330993

RESUMO

The role of ion rotation in determining ion mobilities is explored using the subtle gas phase ion mobility shifts based on differences in ion mass distributions between isotopomer ions that have been observed with ion mobility spectrometry (IMS) measurements. These mobility shifts become apparent for IMS resolving powers on the order of ∼1500 where relative mobilities (or alternatively momentum transfer collision cross sections; Ω) can be measured with a precision of ∼10 ppm. The isotopomer ions have identical structures and masses, differing only in their internal mass distributions, and their Ω differences cannot be predicted by widely used computational approaches, which ignore the dependence of Ω on the ion's rotational properties. Here, we investigate the rotational dependence of Ω, which includes changes to its collision frequency due to thermal rotation as well as the coupling of translational to rotational energy transfer. We show that differences in rotational energy transfer during ion-molecule collisions provide the major contribution to isotopomer ion separations, with only a minor contribution due to an increase in collision frequency due to ion rotation. Modeling including these factors allowed for differences in Ω to be calculated that precisely mirror the experimental separations. These findings also highlight the promise of pairing high-resolution IMS measurements with theory and computation for improved elucidation of subtle structural differences between ions.

11.
J Colloid Interface Sci ; 637: 326-339, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36706728

RESUMO

HYPOTHESIS: The precipitation and dissolution of aluminum-bearing mineral phases in aqueous systems often proceed via changes in both aluminum coordination number and connectivity, complicating molecular-scale interpretation of the transformation mechanism. Here, the thermally induced transformation of crystalline sodium aluminum salt hydrate, a phase comprised of monomeric octahedrally coordinated aluminate which is of relevance to industrial aluminum processing, has been studied. Because intermediate aluminum coordination states during melting have not previously been detected, it is hypothesized that the transition to lower coordinated aluminum ions occurs within ahighly disordered quasi-two-dimensional phase at the solid-solution interface. EXPERIMENTS AND SIMULATIONS: In situ X-ray diffraction (XRD), Raman and27Al nuclear magnetic resonance (NMR) spectroscopy were used to monitor the melting transition of nonasodium aluminate hydrate (NSA, Na9[Al(OH)6]2·3(OH)·6H2O). A mechanistic interpretation was developed based on complementary classical molecular dynamics (CMD) simulations including enhanced sampling. A reactive forcefield was developed to bridge speciation in the solution and in the solid phase. FINDINGS: In contrast to classical dissolution, aluminum coordination change proceeds through a dynamically stabilized ensemble of intermediate states in a disordered layer at the solid-solution interface. In both melting and dissolution of NSA, octahedral, monomeric aluminum transition through an intermediate of pentahedral coordination. The intermediate dehydroxylates to form tetrahedral aluminate (Al(OH)4-) in the liquid phase. This coordination change is concomitant with a breaking of the ionic aluminate-sodium ionlinkages. The solution phase Al(OH)4- ions subsequently polymerize into polynuclear aluminate ions. However, there are some differences between bulk melting and interfacial dissolution, with the onset of the surface-controlled process occurring at a lower temperature (∼30 °C) and the coordination change taking place more gradually as a function of temperature. This work to determine the local structure and dynamics of aluminum in the disordered layer provides a new basis to understand mechanisms controlling aluminum phase transformations in highly alkaline solutions.

12.
J Phys Chem Lett ; 14(4): 870-878, 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36657160

RESUMO

A primary means to generate hydrated electrons in laboratory experiments is excitation to the charge-transfer-to-solvent (CTTS) state of a solute such as I-(aq), but this initial step in the genesis of e-(aq) has never been simulated directly using ab initio molecular dynamics. We report the first such simulations, combining ground- and excited-state simulations of I-(aq) with a detailed analysis of fluctuations in the Coulomb potential experienced by the nascent solvated electron. What emerges is a two-step picture of the evolution of e-(aq) starting from the CTTS state: I-(aq) + hν → I-*(aq) → I•(aq) + e-(aq). Notably, the equilibrated ground state of e-(aq) evolves from I-*(aq) without any nonadiabatic transitions, simply as a result of solvent reorganization. The methodology used here should be applicable to other photochemical electron transfer processes in solution, an important class of problems directly relevant to photocatalysis and energy transfer.

13.
J Am Soc Mass Spectrom ; 33(8): 1453-1457, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35852821

RESUMO

Ion trajectory simulation in mass spectrometry systems from injection to detection is technically challenging but very important for better understanding the ion dynamics in instrument development. Here, we present SimELIT (Simulator of Eulerian and Lagrangian Ion Trajectories), a novel ion trajectory simulation platform. SimELIT is built upon a suite of multiphysics solvers compiled into OpenFOAM (an open-source numerical solver library particularly used for computational mechanics), with a simple web-based graphical user interface (GUI) allowing users to define the details of OpenFOAM cases and run simulations. SimELIT is a modular program and can provide extensions of physics (e.g., gas flows, electrodynamic fields) and thus enable ion trajectory simulations from the ion source to detector. The current version (SimELIT) provides two numerical solvers for ion trajectory simulations─(1) a Lagrangian particle tracker in vacuum and (2) a Eulerian ion density solver in background gas in the presence of electric fields. Here, we describe the architecture of SimELIT, including its use of Docker and the React Framework, and demonstrate the computation of ion trajectories of multiple m/z values in a static/linear voltage drop in vacuum (across a 1 m long flight tube). Further, the drift motion of ions under 1 Torr pressure conditions in a static background (N2) gas through a 20 V/cm static electric field is shown. The results produced from SimELIT were compared with SIMION and theoretical estimates. In addition, we report the computation of ion trajectories in electrodynamic fields within a planar FAIMS device operating at atmospheric pressure.

14.
Magn Reson Chem ; 60(2): 226-238, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34536037

RESUMO

Although nanometer-sized aluminum hydroxide clusters (i.e., ϵ-Al13 , [Al13 O4 (OH)24 (H2 O)12 ]7+ ) command a central role in aluminum ion speciation and transformations between minerals, measurement of their translational diffusion is often limited to indirect methods. Here, 27 Al pulsed field gradient stimulated echo nuclear magnetic resonance (PFGSTE NMR) spectroscopy has been applied to the AlO4 core of the ϵ-Al13 cluster with complementary theoretical simulations of the diffusion coefficient and corresponding hydrodynamic radii from a boundary element-based calculation. The tetrahedral AlO4 center of the ϵ-Al13 cluster is symmetric and exhibits only weak quadrupolar coupling, which results in favorable T1 and T2 27 Al NMR relaxation coefficients for 27 Al PFGSTE NMR studies. Stokes-Einstein relationship was used to relate the 27 Al diffusion coefficient of the ϵ-Al13 cluster to the hydrodynamic radius for comparison with theoretical simulations, dynamic light scattering from literature, and previously published 1 H PFGSTE NMR studies of chelated Keggin clusters. This first-of-its-kind observation proves that 27 Al PFGSTE NMR diffusometry can probe symmetric Al environments in polynuclear clusters of greater molecular weight than previously considered.

15.
Inorg Chem ; 60(21): 16223-16232, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34644061

RESUMO

Aluminate salts precipitated from caustic alkaline solutions exhibit a correlation between the anionic speciation and the identity of the alkali cation in the precipitate, with the aluminate ions occurring either in monomeric (Al(OH)4-) or dimeric (Al2O(OH)62-) forms. The origin of this correlation is poorly understood as are the roles that oligomeric aluminate species play in determining the solution structure, prenucleation clusters, and precipitation pathways. Characterization of aluminate solution speciation with vibrational spectroscopy results in spectra that are difficult to interpret because the ions access a diverse and dynamic configurational space. To investigate the Al(OH)4- and Al2O(OH)62- anions within a well-defined crystal lattice, inelastic neutron scattering (INS) and Raman spectroscopic data were collected and simulated by density functional theory for K2[Al2O(OH)6], Rb2[Al2O(OH)6], and Cs[Al(OH) 4]·2H2O. These structures capture archetypal solution aluminate species: the first two salts contain dimeric Al2O(OH)62- anions, while the third contains the monomeric Al(OH)4- anion. Comparisons were made to the INS and Raman spectra of sodium aluminate solutions frozen in a glassy state. In contrast to solution systems, the crystal lattice of the salts results in well-defined vibrations and associated resolved bands in the INS spectra. The use of a theory-guided analysis of the INS of this solid alkaline aluminate series revealed that differences were related to the nature of the hydrogen-bonding network and showed that INS is a sensitive probe of the degree of completeness and strength of the bond network in hydrogen-bonded materials. Results suggest that the ionic size may explain cation-specific differences in crystallization pathways in alkaline aluminate salts.

16.
J Vis Exp ; (174)2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34424235

RESUMO

Amongst the challenges for a variety of research fields are the visualization of solid-liquid interfaces and understanding how they are affected by the solution conditions such as ion concentrations, pH, ligands, and trace additives, as well as the underlying crystallography and chemistry. In this context, three-dimensional fast force mapping (3D FFM) has emerged as a promising tool for investigating solution structure at interfaces. This capability is based on atomic force microscopy (AFM) and allows the direct visualization of interfacial regions in three spatial dimensions with sub-nanometer resolution. Here we provide a detailed description of the experimental protocol for acquiring 3D FFM data. The main considerations for optimizing the operating parameters depending on the sample and application are discussed. Moreover, the basic methods for data processing and analysis are discussed, including the transformation of the measured instrument observables into tip-sample force maps that can be linked to the local solution structure. Finally, we shed light on some of the outstanding questions related to 3D FFM data interpretation and how this technique can become a central tool in the repertoire of surface science.


Assuntos
Microscopia de Força Atômica , Cristalografia
17.
Soft Matter ; 17(32): 7476-7486, 2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34291272

RESUMO

The geometric organization and force networks of 3D dense suspensions that exhibit both shear thinning and thickening have been examined as a function of varying strength of interparticle attractive interactions using lubrication flow discrete element simulations. Significant rearrangement of the geometric topology does not occur at either the local or global scale as these systems transition across the shear thinning and shear thickening regimes. In contrast, massive rearrangements in the balance of attractive, lubrication, and contact forces are observed with interesting behavior of network growth and competition. In agreement with prior work, in shear thinning regions the attractive force is dominant, however as the shear thickening region is approached there is growth of lubrication forces. Lubrication forces oppose the attraction forces, but as viscosity continues to increase under increasing shear stress, the lubrication forces are dominated by contact forces that also resist attraction. Contact forces are the dominant interactions during shear thickening and are an order of magnitude higher than their values in the shear-thinning regime. At high attractive interaction strength, contact networks can form even under shear thinning conditions, however high shear stress is still required before contact networks become the driving mechanism of shear thickening. Analysis of the contact force network during shear thickening generally indicates a uniformly spreading network that rapidly forms across empty domains; however the growth patterns exhibit structure that is significantly dependent upon the strength of interparticle interactions, indicating subtle variations in the mechanism of shear thickening.

18.
Acc Chem Res ; 54(13): 2833-2843, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34137593

RESUMO

Given the universal importance of electrolyte solutions, it is natural to expect that we have a nearly complete understanding of the fundamental properties of these solutions (e.g., the chemical potential) and that we can therefore explain, predict, and control the phenomena occurring in them. In fact, reality falls short of these expectations. But, recent advances in the simulation and modeling of electrolyte solutions indicate that it should soon be possible to make progress toward these goals. In this Account, we will discuss the use of first-principles interaction potentials based in quantum mechanics (QM) to enhance our understanding of electrolyte solutions. Specifically, we will focus on the use of quantum density functional theory (DFT) combined with molecular dynamics simulation (DFT-MD) as the foundation for our approach. The overarching concept is to understand and accurately reproduce the balance between local or short-ranged (SR) structural details and long-range (LR) correlations, allowing the prediction of the thermodynamics of both single ions in solution as well as the collective interactions characterized by activity/osmotic coefficients. In doing so, relevant collective motions and driving forces characterized by chemical potentials can be determined.In this Account, we will make the case that understanding electrolyte solutions requires a faithful QM representation of the SR nature of the ion-ion, ion-water, and water-water interactions. However, the number of molecules that is required for collective behavior makes the direct application of high-level QM methods that contain the best SR physics untenable, making methods that balance accuracy and efficiency a practical goal. Alternatives such as continuum solvent models (CSMs) and empirically based classical molecular dynamics have been extensively employed to resolve this problem but without yet overcoming the fundamental issue of SR accuracy. We will demonstrate that accurately describing the SR interaction is imperative for predicting both intrinsic properties, namely, at infinite dilution, and collective properties of electrolyte solutions.DFT has played an important role in our understanding of condensed phase systems, e.g., bulk liquid water, the air-water interface, ions in bulk, and at the air-water interface. This approach holds huge promise to provide benchmark calculations of electrolyte solution properties that will allow for the development and improvement of more efficient methods, as well as an enhanced understanding of fundamental phenomena. However, the standard protocol using the generalized gradient approximation with van der Waals (vdW) correction requires improvement in order to achieve a high level of quantitative accuracy. Simply simulating with higher level DFT functionals may not be the best route considering the significant computational cost. Alternative methods of incorporating information from higher levels of QM should be explored; e.g., using force matching techniques on small clusters, where high level benchmark calculations are possible, to develop ideal correction terms to the DFT functional is a promising possibility. We argue that DFT with statistical mechanics is becoming an increasingly useful framework enabling the prediction of collective electrolyte properties.

19.
Inorg Chem ; 59(24): 18181-18189, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33252218

RESUMO

The molecular speciation of aluminum (Al3+) in alkaline solutions is fundamental to its precipitation chemistry within a number of industrial applications that include ore refinement and industrial processing of Al wastes. Under these conditions, Al3+ is predominantly Al(OH)4-, while at high [Al3+] dimeric species are also known to form. To date, the mechanism of dimer formation remains unclear and is likely influenced by complex ion···ion interactions. In the present work, we investigate a suite of potential dimerization pathways and the role of ion pairing on energetics using static DFT calculations and DFT and density functional tight binding molecular dynamics. Specific cation effects imparted by the background electrolyte cations Na+, Li+, and K+ have been examined. Our simulations predict that, when the Al species are ion-paired with either cation, the formation of the oxo-bridged Al2O(OH)62- is favored with respect to the dihydroxo-bridged Al2(OH)82-, in agreement with previous spectroscopic work. The formation of both dimers first proceeds by bridging of two monomeric units via one hydroxo ligand, leading to a labile Al2(OH)82- isomer. The effect of contact ion pairing of Li+ and K+ on the dimerization energetics is distinctly more favorable than that of Na+, which may have an effect on further oligomerization.

20.
Inorg Chem ; 59(20): 15295-15301, 2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33000622

RESUMO

We report the heterolysis of molecular hydrogen under ambient conditions by the crystalline frustrated Lewis pair (FLP) 1-{2-[bis(pentafluorophenyl)boryl]phenyl}-2,2,6,6-tetramethylpiperidine (KCAT). The gas-solid reaction provides an approach to prepare the solvent-free, polycrystalline ion pair KCATH2 through a single crystal to single crystal transformation. The crystal lattice of KCATH2 increases in size relative to the parent KCAT by approximately 2%. Microscopy was used to follow the transformation of the highly colored red/orange KCAT to the colorless KCATH2 over a period of 2 h at 300 K under a flow of H2 gas. There is no evidence of crystal decrepitation during hydrogen uptake. Inelastic neutron scattering employed over a temperature range from 4-200 K did not provide evidence for the formation of polarized H2 in a precursor complex within the crystal at low temperatures and high pressures. However, at 300 K, the INS spectrum of KCAT transformed to the INS spectrum of KCATH2. Calculations suggest that the driving force is more favorable in the solid state compared to the solution or gas phase, but the addition of H2 into the KCAT crystal is unfavorable. Ab Initio methods were used to calculate the INS spectra of KCAT, KCATH2, and a possible precursor complex of H2 in the pocket between the B and N of crystalline KCAT. Ex-situ NMR showed that the transformation from KCAT to KCATH2 is quantitative and our results suggest that the hydrogen heterolysis process occurs via H2 diffusion into the FLP crystal with a rate-limiting movement of H2 from inactive positions to reactive sites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...