Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JMIR Med Inform ; 6(4): e49, 2018 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-30482741

RESUMO

BACKGROUND: Telehealth programs have been successful in reducing 30-day readmissions and emergency department visits. However, such programs often focus on the costliest patients with multiple morbidities and last for only 30 to 60 days postdischarge. Inexpensive monitoring of elderly patients via a personal emergency response system (PERS) to identify those at high risk for emergency hospital transport could be used to target interventions and prevent avoidable use of costly readmissions and emergency department visits after 30 to 60 days of telehealth use. OBJECTIVE: The objectives of this study were to (1) develop and validate a predictive model of 30-day emergency hospital transport based on PERS data; and (2) compare the model's predictions with clinical outcomes derived from the electronic health record (EHR). METHODS: We used deidentified medical alert pattern data from 290,434 subscribers to a PERS service to build a gradient tree boosting-based predictive model of 30-day hospital transport, which included predictors derived from subscriber demographics, self-reported medical conditions, caregiver network information, and up to 2 years of retrospective PERS medical alert data. We evaluated the model's performance on an independent validation cohort (n=289,426). We linked EHR and PERS records for 1815 patients from a home health care program to compare PERS-based risk scores with rates of emergency encounters as recorded in the EHR. RESULTS: In the validation cohort, 2.22% (6411/289,426) of patients had 1 or more emergency transports in 30 days. The performance of the predictive model of emergency hospital transport, as evaluated by the area under the receiver operating characteristic curve, was 0.779 (95% CI 0.774-0.785). Among the top 1% of predicted high-risk patients, 25.5% had 1 or more emergency hospital transports in the next 30 days. Comparison with clinical outcomes from the EHR showed 3.9 times more emergency encounters among predicted high-risk patients than low-risk patients in the year following the prediction date. CONCLUSIONS: Patient data collected remotely via PERS can be used to reliably predict 30-day emergency hospital transport. Clinical observations from the EHR showed that predicted high-risk patients had nearly four times higher rates of emergency encounters than did low-risk patients. Health care providers could benefit from our validated predictive model by targeting timely preventive interventions to high-risk patients. This could lead to overall improved patient experience, higher quality of care, and more efficient resource utilization.

2.
JMIR Res Protoc ; 7(5): e10045, 2018 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-29743156

RESUMO

BACKGROUND: Soaring health care costs and a rapidly aging population, with multiple comorbidities, necessitates the development of innovative strategies to deliver high-quality, value-based care. OBJECTIVE: The goal of this study is to evaluate the impact of a risk assessment system (CareSage) and targeted interventions on health care utilization. METHODS: This is a two-arm randomized controlled trial recruiting 370 participants from a pool of high-risk patients receiving care at a home health agency. CareSage is a risk assessment system that utilizes both real-time data collected via a Personal Emergency Response Service and historical patient data collected from the electronic medical records. All patients will first be observed for 3 months (observation period) to allow the CareSage algorithm to calibrate based on patient data. During the next 6 months (intervention period), CareSage will use a predictive algorithm to classify patients in the intervention group as "high" or "low" risk for emergency transport every 30 days. All patients flagged as "high risk" by CareSage will receive nurse triage calls to assess their needs and personalized interventions including patient education, home visits, and tele-monitoring. The primary outcome is the number of 180-day emergency department visits. Secondary outcomes include the number of 90-day emergency department visits, total medical expenses, 180-day mortality rates, time to first readmission, total number of readmissions and avoidable readmissions, 30-, 90-, and 180-day readmission rates, as well as cost of intervention per patient. The two study groups will be compared using the Student t test (two-tailed) for normally distributed and Mann Whitney U test for skewed continuous variables, respectively. The chi-square test will be used for categorical variables. Time to event (readmission) and 180-day mortality between the two study groups will be compared by using the Kaplan-Meier survival plots and the log-rank test. Cox proportional hazard regression will be used to compute hazard ratio and compare outcomes between the two groups. RESULTS: We are actively enrolling participants and the study is expected to be completed by end of 2018; results are expected to be published in early 2019. CONCLUSIONS: Innovative solutions for identifying high-risk patients and personalizing interventions based on individual risk and needs may help facilitate the delivery of value-based care, improve long-term patient health outcomes and decrease health care costs. TRIAL REGISTRATION: ClinicalTrials.gov NCT03126565; https://clinicaltrials.gov/ct2/show/NCT03126565 (Archived by WebCite at http://www.webcitation.org/6ymDuAwQA).

3.
JMIR Aging ; 1(2): e10254, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31518241

RESUMO

BACKGROUND: Half of Medicare reimbursement goes toward caring for the top 5% of the most expensive patients. However, little is known about these patients prior to reaching the top or how their costs change annually. To address these gaps, we analyzed patient flow and associated health care cost trends over 5 years. OBJECTIVE: To evaluate the cost of health care utilization in older patients by analyzing changes in their long-term expenditures. METHODS: This was a retrospective, longitudinal, multicenter study to evaluate health care costs of 2643 older patients from 2011 to 2015. All patients had at least one episode of home health care during the study period and used a personal emergency response service (PERS) at home for any length of time during the observation period. We segmented all patients into top (5%), middle (6%-50%), and bottom (51%-100%) segments by their annual expenditures and built cost pyramids based thereon. The longitudinal health care expenditure trends of the complete study population and each segment were assessed by linear regression models. Patient flows throughout the segments of the cost acuity pyramids from year to year were modeled by Markov chains. RESULTS: Total health care costs of the study population nearly doubled from US $17.7M in 2011 to US $33.0M in 2015 with an expected annual cost increase of US $3.6M (P=.003). This growth was primarily driven by a significantly higher cost increases in the middle segment (US $2.3M, P=.003). The expected annual cost increases in the top and bottom segments were US $1.2M (P=.008) and US $0.1M (P=.004), respectively. Patient and cost flow analyses showed that 18% of patients moved up the cost acuity pyramid yearly, and their costs increased by 672%. This was in contrast to 22% of patients that moved down with a cost decrease of 86%. The remaining 60% of patients stayed in the same segment from year to year, though their costs also increased by 18%. CONCLUSIONS: Although many health care organizations target intensive and costly interventions to their most expensive patients, this analysis unveiled potential cost savings opportunities by managing the patients in the lower cost segments that are at risk of moving up the cost acuity pyramid. To achieve this, data analytics integrating longitudinal data from electronic health records and home monitoring devices may help health care organizations optimize resources by enabling clinicians to proactively manage patients in their home or community environments beyond institutional settings and 30- and 60-day telehealth services.

4.
BMC Health Serv Res ; 17(1): 282, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28420358

RESUMO

BACKGROUND: Personal Emergency Response Systems (PERS) are traditionally used as fall alert systems for older adults, a population that contributes an overwhelming proportion of healthcare costs in the United States. Previous studies focused mainly on qualitative evaluations of PERS without a longitudinal quantitative evaluation of healthcare utilization in users. To address this gap and better understand the needs of older patients on PERS, we analyzed longitudinal healthcare utilization trends in patients using PERS through the home care management service of a large healthcare organization. METHODS: Retrospective, longitudinal analyses of healthcare and PERS utilization records of older patients over a 5-years period from 2011-2015. The primary outcome was to characterize the healthcare utilization of PERS patients. This outcome was assessed by 30-, 90-, and 180-day readmission rates, frequency of principal admitting diagnoses, and prevalence of conditions leading to potentially avoidable admissions based on Centers for Medicare and Medicaid Services classification criteria. RESULTS: The overall 30-day readmission rate was 14.2%, 90-days readmission rate was 34.4%, and 180-days readmission rate was 42.2%. While 30-day readmission rates did not increase significantly (p = 0.16) over the study period, 90-days (p = 0.03) and 180-days (p = 0.04) readmission rates did increase significantly. The top 5 most frequent principal diagnoses for inpatient admissions included congestive heart failure (5.7%), chronic obstructive pulmonary disease (4.6%), dysrhythmias (4.3%), septicemia (4.1%), and pneumonia (4.1%). Additionally, 21% of all admissions were due to conditions leading to potentially avoidable admissions in either institutional or non-institutional settings (16% in institutional settings only). CONCLUSIONS: Chronic medical conditions account for the majority of healthcare utilization in older patients using PERS. Results suggest that PERS data combined with electronic medical records data can provide useful insights that can be used to improve health outcomes in older patients.


Assuntos
Sistemas de Comunicação entre Serviços de Emergência/estatística & dados numéricos , Medicare/estatística & dados numéricos , Aceitação pelo Paciente de Cuidados de Saúde/estatística & dados numéricos , Acidentes por Quedas/estatística & dados numéricos , Adulto , Idoso , Atenção à Saúde/estatística & dados numéricos , Registros Eletrônicos de Saúde/estatística & dados numéricos , Feminino , Custos de Cuidados de Saúde , Insuficiência Cardíaca/reabilitação , Hospitalização/estatística & dados numéricos , Humanos , Pacientes Internados/estatística & dados numéricos , Estudos Longitudinais , Masculino , Medicaid/estatística & dados numéricos , Pessoa de Meia-Idade , Readmissão do Paciente/estatística & dados numéricos , Prevalência , Estudos Retrospectivos , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...