Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Aquat Toxicol ; 228: 105633, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33069118

RESUMO

Microbial community functional diversity enhances the degradation of organic matter and pollutants in the environment, but there is a growing concern that these ecosystem services may be altered by the introduction of emerging environmental contaminants including silver nanoparticles (AgNPs) into aquatic systems. We added 0, 25, 50, 75, 100, and 125 mg L-1 (nominal concentrations) of citrate-AgNP and polyvinylpyrrolidone-AgNP (PVP-AgNP) each to freshwater sediment and examined their antimicrobial effects on microbial communities using community-level physiological profiling. The results showed that citrate-AgNP decreased the overall microbial catabolic activity by 80% from 1.16 ± 0.02 to 0.23 ± 08 while PVP-AgNP decreased the catabolic activity by 51% from 1.25 ± 0.07 to 0.61 ± 0.19 at 125 mg L-1. Citrate-AgNP and PVP-AgNP caused a statistically significant reduction in substrate richness and substrate diversity that decreased microbial functional diversity. AgNPs decreased microbial catabolic capability and functional diversity at concentrations ranging from 0.12 ± 0.04 to 0.43 ± 0.07 mg Ag kg-1 which are lower than the predicted concentrations in freshwater sediment. To our knowledge, this is the first study to demonstrate inhibition of microbial functional diversity by citrate-AgNP and PVP-AgNP in a pathogen impaired stream. Citrate-AgNP caused greater inhibition of carbon substrate utilization but amino acids, carbohydrates, and carboxylic acids were the most affected carbon groups which led to a shift in the metabolic fingerprint pattern of the microbial community. AgNPs decreased the catabolic capability and the ability of the microbial community to degrade organic matter and a variety of pollutants in the environment.


Assuntos
Metabolômica , Nanopartículas Metálicas/toxicidade , Microbiota/efeitos dos fármacos , Prata/toxicidade , Poluentes Químicos da Água/toxicidade , Biodiversidade , Carbono/farmacologia , Ácido Cítrico , Sedimentos Geológicos/química , Nanopartículas Metálicas/ultraestrutura , Análise de Componente Principal
2.
Environ Pollut ; 263(Pt B): 114536, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32320903

RESUMO

Silver nanoparticles (AgNPs) are expected to enter aquatic systems, but there are limited data on how they might affect microbial communities in pathogen impaired streams. We examined microbial community responses to citrate-AgNP (10.9 ± 0.7 nm) and polyvinylpyrrolidone (PVP)-AgNP (11.0 ± 0.7 nm) based on microbial concentration and enzyme activity in sediment from a pathogen impaired stream. Addition of each nanoparticle to sediment caused at least a 69% decrease in microbial concentration (1,264 ± 93.6 to 127 ± 29.5 CFU/g) and a 62% decrease in ß-glucosidase activity (11.7 ± 2.1 to 1.3 ± 0.3 µg/g/h). Each AgNP reduced alkaline phosphatase activity but their effects were not statistically significant. Sediment exposed to 0.108 mg Ag/kg of AgNO3 resulted in a 92% decrease in microbial concentration and a reduced enzyme activity which was not statistically significant. Measured total silver in sediments treated with AgNPs which exhibited significant inhibition effects on the microbial community ranged from 0.19 ± 0.02 to 0.39 ± 0.13 mg Ag/kg. These concentrations tested in this study are much lower than the expected concentrations (2-14 mg Ag/kg) in freshwater sediments. The results of this study demonstrate that AgNPs can alter microbial community activity and population size, which may lead to false negative fecal indicator bacteria detection and enumeration using methods that rely on ß-glucosidase activity. We conclude that the presence of AgNPs in impaired streams and recreational waters can influence pathogen detection methods, potentially affecting public health risk estimates.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Bactérias , Rios , Prata/análise
3.
Water Environ Res ; 89(11): 1961-1969, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28327258

RESUMO

This study assessed the usefulness of multivariate statistical tools to characterize watershed dynamics and prioritize streams for remediation. Three multiple regression models were developed using water quality data collected from Sinking Creek in the Watauga River watershed in Northeast Tennessee. Model 1 included all water quality parameters, model 2 included parameters identified by stepwise regression, and model 3 was developed using canonical discriminant analysis. Models were evaluated in seven creeks to determine if they correctly classified land use and level of fecal pollution. At the watershed level, the models were statistically significant (p < 0.001) but with low r2 values (Model 1 r2 = 0.02, Model 2 r2 = 0.01, Model 3 r2 = 0.35). Model 3 correctly classified land use in five of seven creeks. These results suggest this approach can be used to set priorities and identify pollution sources, but may be limited when applied across entire watersheds.


Assuntos
Monitoramento Ambiental , Fezes , Poluição da Água , Recuperação e Remediação Ambiental , Análise de Regressão
4.
Sci Total Environ ; 574: 1379-1388, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27539821

RESUMO

Infamous for "Mad hatter syndrome" and "Minamata disease", mercury (Hg) is ranked high on the Agency for Toxic Substances and Disease Registry's priority list of hazardous substances for its potent neurologic, renal, and developmental toxicities. Most typical exposures are via contaminated water and food. Although regulations and advisories are exercised at various levels, Hg pollution from both natural and anthropogenic sources has remained a major public health and safety concern. Rapid detection of solvated aqueous Hg2+ ions at low levels is critical for immediate response and protection of those who are vulnerable (young children, pregnant and breast-feeding women) to acute and chronic exposures to Hg2+. Various types of sensors capable of detecting Hg in water have been developed. In particular, the novel use of engineered carbon nanotubes (CNTs) has garnered attention due to their specificity and sensitivity towards Hg2+ detection in solution. In this focused review, we describe the sensitivity, selectivity and mechanisms of Hg2+ ion sensing at trace levels by employing CNT-based various sensor designs, and appraise the open literature on the currently applied and "proof-of-concept" methods. Five different types of CNT-based sensor systems are described: potentiometric, DNA-based fluorescence, surface plasmon resonance (SPR), colorimetric, and stripping voltammetric assays. In addition, the recognized merits and shortcomings for each type of electrochemical sensors are discussed. The knowledge from this succinct review shall guide the development of the next generation CNT-based biochemical sensors for rapid Hg2+ detection in the environment, which is a significant first step towards human health risk analysis of this legacy toxicant.

5.
J Environ Qual ; 43(1): 358-70, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25602570

RESUMO

The increasing number of polluted watersheds and water bodies with total maximum daily loads (TMDLs) has resulted in increased research to find methods that effectively and universally identify fecal pollution sources. A fundamental requirement to identify such methods is understanding the microbial and chemical processes that influence fate and transport of fecal indicators from various sources to receiving streams. Using the Watauga River watershed in northeast Tennessee as a model to better understand these processes, multivariate statistical analyses were conducted on data collected from four creeks that have or are expected to have pathogen TMDLs. The application of canonical correlation and discriminant analyses revealed spatial and temporal variability in the microbial and chemical parameters influencing water quality, suggesting that these creeks differ in terms of the nature and extent of fecal pollution. The identification of creeks within a watershed that have similar sources of fecal pollution using this data analysis approach could change prioritization of best management practices selection and placement. Furthermore, this suggests that TMDL development may require multiyear and multisite data using a targeted sampling approach instead of a 30-d geometric mean in large, complex watersheds. This technique may facilitate the choice between watershed TMDLs and single segment or stream TMDLs.

6.
Environ Sci Technol ; 47(22): 12877-85, 2013 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-24144348

RESUMO

Key understanding of potential transformations that may occur on silver nanoparticle (AgNP) surface upon interaction with naturally ubiquitous organic ligands (e.g., -SH (thoil), humic acid, or -COO (carboxylate)) is limited. Herein we investigated how dissolved organic carbon (DOC), -SH (in cysteine, a well-known Ag(+) chelating agent), and -COO (in trolox, a well-known antioxidant) could alter the colloidal stability, dissolution rate, and toxicity of citrate-functionalized AgNPs (citrate-AgNPs) against a keystone crustacean Daphnia magna. Cysteine, DOC, or trolox amendment of citrate-AgNPs differentially modified particle size, surface properties (charge, plasmonic spectra), and ion release dynamics, thereby attenuating (with cysteine or trolox) or promoting (with DOC) AgNP toxicity. Except with DOC amendment, the combined toxicity of AgNPs and released Ag under cysteine or trolox amendment was lower than of AgNO3 alone. The results of this study show that citrate-AgNP toxicity can be associated with oxidative stress, ion release, and the organism biology. Our evidence suggests that specific organic ligands available in the receiving waters can differentially surface modify AgNPs and alter their environmental persistence (changing dissolution dynamics) and subsequently the toxicity; hence, we caveat to generalize that surface modified nanoparticles upon environmental release may not be toxic to receptor organisms.


Assuntos
Coloides/química , Nanopartículas Metálicas/toxicidade , Compostos Orgânicos/química , Prata/toxicidade , Testes de Toxicidade , Animais , Carbono/análise , Cromanos/química , Citratos/química , Cisteína/química , Daphnia/efeitos dos fármacos , Íons , Ligantes , Tamanho da Partícula , Solubilidade , Ressonância de Plasmônio de Superfície , Propriedades de Superfície , Poluentes Químicos da Água/toxicidade
7.
Sci Total Environ ; 426: 414-22, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22521164

RESUMO

Current understanding of potential toxicity of engineered nanomaterials to aquatic microorganisms is limited for risk assessment and management. Here we evaluate if the MetPLATE™ test can be used as an effective and rapid screening tool to test for potential aquatic toxicity of various metal-based nanoparticles (NPs). The MetPLATE bioassay is a heavy metal sensitive test based on ß-galactosidase activity in Escherichia coli. Five different types of metal-based NPs were screened for toxicity: (1) citrate coated nAg (Citrate-nanosilver), (2) polyvinylpyrrolidone coated nAg (PVP-nAg), (3) uncoated nZnO, (4) uncoated nTiO(2) and (5) 1-Octadecylamine coated CdSe Quantum Dots (CdSe QDs); and compared with their corresponding ionic salt toxicity. Citrate-nAg was further fractionated into clean Citrate-nAg, unclean Citrate-nAg and permeate using a tangential flow filtration (TFF) system to eliminate residual ions and impurities from the stock Citrate-nAg suspension and also to differentiate between ionic- versus nano-specific toxicity. Our results showed that nAg, nZnO and CdSe QDs were less toxic than their corresponding ionic salts tested, while nano- or ionic form of TiO(2) was not toxic as high as 2.5 g L(-1) to the MetPLATE™ bacteria. Although coating-dependent toxicity was noticeable between two types of Ag NPs evaluated, particle size and surface charge were not adequate to explain the observed toxicity; hence, the toxicity appeared to be material-specific. Overall, the toxicity followed the trend: CdCl(2)>AgNO(3)>PVP-nAg>unclean Citrate-nAg>clean Citrate-nAg>ZnSO(4)>nZnO>CdSe QDs>nTiO(2)/TiO(2). These results indicate that an evaluation of ß-galactosidase inhibition in MetPLATE™ E. coli can be an important consideration for rapid screening of metal-based NP toxicity, and should facilitate ecological risk assessment of these emerging contaminants.


Assuntos
Nanopartículas Metálicas/toxicidade , Testes de Toxicidade/métodos , Poluentes Químicos da Água/toxicidade , Bioensaio , Monitoramento Ambiental/métodos , Escherichia coli , Medição de Risco , beta-Galactosidase/metabolismo
8.
J Environ Qual ; 31(4): 1137-45, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12175031

RESUMO

The health of the northern hardwood forest in the southern Appalachian Mountains of Tennessee, North Carolina, and Virginia has gained attention from the media and environmental stakeholders due to a purported decline in forest health at higher elevations. This project examined lead (Pb) and calcium (Ca) concentrations in growth rings of an important northern hardwood species, American beech (Fagus grandifolia Ehrh.) at Mount Rogers and Whitetop Mountain, Virginia and attempted to examine concentration relationships with stem growth patterns. Dominant and codominant trees were sampled from 16 research plots at two elevations. Tree cores were crossdated, divided into sections of 10-yr periods, and analyzed using atomic absorption spectroscopy. Lead concentrations correlated negatively with ring width. Elevation and aspect were significantly associated with the Pb concentration, while Ca concentrations were only associated with aspect. Tree core samples taken from higher elevation plots contained higher Pb concentrations than samples collected from lower elevation plots, while the northwest and southwest aspects contained significantly higher amounts of Pb and Ca. Both Pb and Ca concentrations increased during the 1860s and again during the mid-1900s.


Assuntos
Cálcio/farmacocinética , Poluentes Ambientais/farmacocinética , Fagus/crescimento & desenvolvimento , Chumbo/farmacocinética , Altitude , Cálcio/efeitos adversos , Cálcio/análise , Monitoramento Ambiental , Poluentes Ambientais/efeitos adversos , Poluentes Ambientais/análise , Fagus/química , Chumbo/efeitos adversos , Chumbo/análise , Espectrofotometria Atômica , Árvores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...