Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Carbohydr Polym ; 334: 122007, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38553199

RESUMO

Pectins are dietary fibers that are attributed with several beneficial immunomodulatory effects. Depending on the degree of esterification (DE), pectins can be classified as high methoxyl pectin (HMP) or low methoxyl pectin (LMP). The aim of this study was to investigate the effects of pectin methyl-esterification on intestinal microbiota and its immunomodulatory properties in naive mice. Supplementation of the diet with LMP or HMP induced changes in the composition of the intestinal microbiota in mice toward Bacteroides, which was mainly promoted by HMP. Metabolome analysis of stool samples from pectin-fed mice showed a different effect of the two types of pectin on the levels of short-chain fatty acids and bile acids, which was consistent with highly efficient in vivo fermentation of LMP. Analysis of serum antibody levels showed a significant increase in IgG and IgA levels by both pectins, while FACS analysis revealed a decrease of infiltrating inflammatory cells in the intestinal lamina propria by HMP. Our study revealed that the structural properties of the investigated pectins determine fermentability, effects on microbial composition, metabolite production, and modulation of immune responses. Consumption of HMP preferentially altered the gut microbiota and suppressed pro-inflammatory immune responses, suggesting a beneficial role in inflammatory diseases.


Assuntos
Microbioma Gastrointestinal , Pectinas , Camundongos , Animais , Pectinas/química , Esterificação , Fibras na Dieta/farmacologia , Fibras na Dieta/metabolismo , Fermentação
2.
Mol Nutr Food Res ; 68(5): e2300420, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38332580

RESUMO

SCOPE: Edible insects contain allergens with potential cross-reactivity to other invertebrates. Here, this study examines IgE-reactive proteins in a house cricket snack (Acheta domesticus) leading to an allergic reaction in a 27-year old man followed by a similar reaction days later after eating shrimps. METHODS AND RESULTS: Prick to prick tests verify the IgE-mediated allergy to crickets and skin prick testing confirms a type I sensitization to house dust mite without any clinical relevance for the patient, and to shrimp extracts, but is negative for several other foods. Serological testing reveals a sensitization to shrimps, shrimp tropomyosin, and house dust mite tropomyosin. IgE-immunodetection shows that the cricket allergic patient is sensitized to two proteins of 45 and >97 kDa using aqueous control cricket extract, but to only one protein at around 45 kDa when using the causative, seasoned insect snack extract. Mass spectrometry data and IgE-inhibition experiments clearly identify this protein belonging to the tropomyosin allergen family. CONCLUSION: This case report suggests that cricket tropomyosin may be an elicitor of allergic reactions even in previously not allergic patients, although it cannot be excluded the patient reacted additionally to other ingredients of the snack.


Assuntos
Hipersensibilidade Alimentar , Gryllidae , Hipersensibilidade , Masculino , Animais , Humanos , Adulto , Tropomiosina , Lanches , Hipersensibilidade/etiologia , Hipersensibilidade/diagnóstico , Alérgenos , Imunoglobulina E , Reações Cruzadas , Hipersensibilidade Alimentar/etiologia
4.
Curr Allergy Asthma Rep ; 23(10): 589-600, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37610671

RESUMO

PURPOSE OF REVIEW: Immunoglobulin A (IgA) mediates immune exclusion of antigens in the gut. Notably, IgA plays also a role in the prevention of IgE-mediated allergies and induction of immune tolerance. The present review addresses the role of IgA in the manifestation of IgE-mediated allergies, including allergen-specific immunotherapy (AIT), the regulation of IgA production, and the mechanism of IgA in immune cell activation. RECENT FINDINGS: The majority of studies report an association of IgA with the induction of immune tolerance in IgE-mediated allergies. However, reports on the involvement of humoral and mucosal IgA, IgA subtypes, monomeric and polymeric IgA, and the mechanism of IgA-mediated immune cell activation are confounding. Effects by IgA are likely mediated by alteration of microbiota, IgE-blocking capacity, or activation of inhibitory signaling pathways. However, the precise mechanism of IgA-regulation, the contribution of serum and/or mucosal IgA, and IgA1/2 subtypes, on the manifestation of IgE-mediated allergies, and the underlying immune modulatory mechanism are still elusive.


Assuntos
Hipersensibilidade Imediata , Imunoglobulina A , Humanos , Hipersensibilidade Imediata/imunologia , Hipersensibilidade Imediata/prevenção & controle , Tolerância Imunológica , Imunidade , Imunoglobulina E
5.
Front Immunol ; 14: 1136669, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37026001

RESUMO

Background: A recombinant fusion protein combining the adjuvant and TLR5-ligand flagellin with the major birch pollen allergen Bet v 1 (rFlaA:Betv1) has been suggested to prevent the manifestation of birch allergy. Noteworthy, rFlaA:Betv1 induced both pro- and anti-inflammatory responses which were differentially regulated. However, the mechanism by which flagellin fusion proteins modulate allergen-specific immune responses, especially the mechanisms underlying IL-1ß secretion and their contribution to the overall immune responses remains elusive. Objective: To investigate the mechanisms underlying the production of IL-1ß from rFlaA:Betv1 stimulated macrophages. Methods: Macrophages were derived from mouse peritoneal-, human buffy-coat-, and PMA-differentiated THP-1 (wild type or lacking either ASC, NLRP3, or NLRC4) cells. Macrophages were stimulated with non-modified rFlaA:Betv1, mutant variants lacking either the flagellin DC0 domain or a sequence motif formerly described to mediate TLR5-activation, and respective controls in the presence or absence of inhibitors interfering with MAPK- and NFκB-signaling. Cytokine secretion was analyzed by ELISA and intracellular signaling by Western Blot. To study the contribution of IL-1ß to the overall immune responses, IL1R-deficient mouse peritoneal macrophages were used. Results: rFlaA:Betv1 consistently activated all types of investigated macrophages, inducing higher IL-1ß secretion compared with the equimolar mixture of both proteins. rFlaA:Betv1-induced activation of THP-1 macrophages was shown to be independent of either the TLR5-activating sequence motif or the flagellin DC0 domain but depended on both NLRP3- and NLRC4-inflammasomes. In addition, NFκB and SAP/JNK MAP kinases regulated rFlaA:Betv1-induced inflammasome activation and cytokine secretion by modulating pro-Caspase-1- and pro-IL-1ß-expression in THP-1 macrophages. Finally, lack of IL-1ß positive feedback via the IL1R strongly diminished the rFlaA:Betv1-induced secretion of IL-1ß, IL-6, and TNF-α from peritoneal macrophages. Conclusion: The mechanisms contributing to rFlaA:Betv1-induced IL-1ß secretion from macrophages were shown to be complex, involving both NLRC4- and NLRP3-inflammsomes, as well as NFκB- and SAP/JNK MAP kinase-signaling. Better understanding the mechanisms regulating the activation of immune cells by novel therapeutic candidates like the rFlaA:Betv1 fusion protein will allow us to further improve and develop new treatment strategies when using flagellin as an adjuvant.


Assuntos
Flagelina , Inflamassomos , Animais , Humanos , Camundongos , Adjuvantes Imunológicos/farmacologia , Alérgenos , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Inflamassomos/metabolismo , Macrófagos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas Recombinantes , Receptor 5 Toll-Like/metabolismo
6.
Allergy ; 78(3): 663-681, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36196479

RESUMO

BACKGROUND: The experimental fusion protein rFlaA:Betv1 was shown to efficiently suppress allergen-specific sensitization in mice. However, the detailed mechanism of rFlaA:Betv1-mediated immune modulation is not fully understood. In this study, we investigated the effect of rFlaA:Betv1 on naïve murine B cells. METHODS: Immune modulating capacity of rFlaA:Betv1 was screened in IL-10 reporter mice. B cells were isolated from spleens of naïve C57Bl/6, TLR5-/- , or MyD88-/- mice, stimulated with rFlaA:Betv1 and controls, and monitored for the expression of the regulatory B cell markers CD1d, CD24, CD38, and surface IgM by flow cytometry. Secreted cytokines, antibodies, and reactivity of the induced antibodies were investigated by ELISA and intracellular flow cytometry. Suppressive capacity of rFlaA:Betv1-stimulated B cells was tested in mDC:CD4+ T cell:B cell triple cultures. RESULTS: Upon in vivo application of rFlaA:Betv1 into IL-10-GFP reporter mice, CD19+ B cells were shown to produce anti-inflammatory IL-10, suggesting B cells to contribute to the immune-modulatory properties of rFlaA:Betv1. rFlaA:Betv1-induced IL-10 secretion was confirmed in human B cells isolated from buffy coats. In vitro stimulation of naïve murine B cells with rFlaA:Betv1 resulted in an mTOR- and MyD88-dependent production of IL-10 and rFlaA:Betv1 induced Bet v 1-reactive IgG production, which was not observed for IgA. rFlaA:Betv1-stimulated B cells formed a CD19+ CD24+ CD1d+ IgM+ CD38+ Breg subpopulation capable of suppressing Bet v 1-induced TH2 cytokine secretion in vitro. CONCLUSION: rFlaA:Betv1 can act as a thymus-independent B cell antigen, stimulating the mTOR- and MyD88-dependent differentiation of B cells displaying a regulatory phenotype, IL-10 secretion, antigen-binding antibody production, and a suppressive capacity in vitro.


Assuntos
Linfócitos B Reguladores , Interleucina-10 , Camundongos , Humanos , Animais , Fator 88 de Diferenciação Mieloide/genética , Flagelina/química , Flagelina/genética , Serina-Treonina Quinases TOR , Imunoglobulina M
7.
Int J Mol Sci ; 23(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36293550

RESUMO

Trained immune responses, based on metabolic and epigenetic changes in innate immune cells, are de facto innate immune memory and, therefore, are of great interest in vaccine development. In previous studies, the recombinant fusion protein rFlaA:Betv1, combining the adjuvant and toll-like receptor (TLR)5-ligand flagellin (FlaA) and the major birch pollen allergen Bet v 1 into a single molecule, significantly suppressed allergic sensitization in vivo while also changing the metabolism of myeloid dendritic cells (mDCs). Within this study, the immune-metabolic effects of rFlaA:Betv1 during mDC activation were elucidated. In line with results for other well-characterized TLR-ligands, rFlaA:Betv1 increased glycolysis while suppressing oxidative phosphorylation to different extents, making rFlaA:Betv1 a suitable model to study the immune-metabolic effects of TLR-adjuvanted vaccines. In vitro pretreatment of mDCs with cerulenin (inhibitor of fatty acid biosynthesis) led to a decrease in both rFlaA:Betv1-induced anti-inflammatory cytokine Interleukin (IL) 10 and T helper cell type (TH) 1-related cytokine IL-12p70, while the pro-inflammatory cytokine IL 1ß was unaffected. Interestingly, pretreatment with the glutaminase inhibitor BPTES resulted in an increase in IL-1ß, but decreased IL-12p70 secretion while leaving IL-10 unchanged. Inhibition of the glycolytic enzyme hexokinase-2 by 2-deoxyglucose led to a decrease in all investigated cytokines (IL-10, IL-12p70, and IL-1ß). Inhibitors of mitochondrial respiration had no effect on rFlaA:Betv1-induced IL-10 level, but either enhanced the secretion of IL-1ß (oligomycin) or decreased IL-12p70 (antimycin A). In extracellular flux measurements, mDCs showed a strongly enhanced glycolysis after rFlaA:Betv1 stimulation, which was slightly increased after respiratory shutdown using antimycin A. rFlaA:Betv1-stimulated mDCs secreted directly antimicrobial substances in a mTOR- and fatty acid metabolism-dependent manner. In co-cultures of rFlaA:Betv1-stimulated mDCs with CD4+ T cells, the suppression of Bet v 1-specific TH2 responses was shown to depend on fatty acid synthesis. The effector function of rFlaA:Betv1-activated mDCs mainly relies on glycolysis, with fatty acid synthesis also significantly contributing to rFlaA:Betv1-mediated cytokine secretion, the production of antimicrobial molecules, and the modulation of T cell responses.


Assuntos
Receptor 5 Toll-Like , Vacinas , Receptor 5 Toll-Like/metabolismo , Alérgenos , Interleucina-10/metabolismo , Flagelina/metabolismo , Hexoquinase/metabolismo , Glutaminase/metabolismo , Ligantes , Antimicina A/metabolismo , Antimicina A/farmacologia , Cerulenina/metabolismo , Cerulenina/farmacologia , Células Dendríticas , Proteínas Recombinantes/metabolismo , Citocinas/metabolismo , Adjuvantes Imunológicos/farmacologia , Vacinas/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Glicólise , Serina-Treonina Quinases TOR/metabolismo , Desoxiglucose/farmacologia , Oligomicinas/farmacologia , Ácidos Graxos/metabolismo
8.
Front Immunol ; 13: 916491, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059475

RESUMO

Background: Recently, bacterial components were shown to enhance immune responses by shifting immune cell metabolism towards glycolysis and lactic acid production, also known as the Warburg Effect. Currently, the effect of allergen products for immunotherapy (AIT) and commercial vaccines on immune cell metabolism is mostly unknown. Objective: To investigate the effect of AIT products (adjuvanted with either MPLA or Alum) on myeloid dendritic cell (mDC) metabolism and activation. Methods: Bone marrow-derived mDCs were stimulated with five allergoid-based AIT products (one adjuvanted with MPLA, four adjuvanted with Alum) and two MPLA-adjuvanted vaccines and analyzed for their metabolic activation, expression of cell surface markers, and cytokine secretion by ELISA. mDCs were pre-incubated with either immunological or metabolic inhibitors or cultured in glucose- or glutamine-free culture media and subsequently stimulated with the MPLA-containing AIT product (AIT product 1). mDCs were co-cultured with allergen-specific CD4+ T cells to investigate the contribution of metabolic pathways to the T cell priming capacity of mDCs stimulated with AIT product 1. Results: Both the MPLA-containing AIT product 1 and commercial vaccines, but not the Alum-adjuvanted AIT products, activated Warburg metabolism and TNF-α secretion in mDCs. Further experiments focused on AIT product 1. Metabolic analysis showed that AIT product 1 increased glycolytic activity while also inducing the secretion of IL-1ß, IL-10, IL-12, and TNF-α. Both rapamycin (mTOR-inhibitor) and SP600125 (SAP/JNK MAPK-inhibitor) dose-dependently suppressed the AIT product 1-induced Warburg Effect, glucose consumption, IL-10-, and TNF-α secretion. Moreover, both glucose- and glutamine deficiency suppressed secretion of all investigated cytokines (IL-1ß, IL-10, and TNF-α). Glucose metabolism in mDCs was also critical for the (Th1-biased) T cell priming capacity of AIT product 1-stimulated mDCs, as inhibition of mTOR signaling abrogated their ability to induce Th1-responses. Conclusion: The AIT product and commercial vaccines containing the adjuvant MPLA were shown to modulate the induction of immune responses by changing the metabolic state of mDCs. Better understanding the mechanisms underlying the interactions between cell metabolism and immune responses will allow us to further improve vaccine development and AIT.


Assuntos
Alérgenos , Vacinas , Adjuvantes Imunológicos/farmacologia , Adjuvantes Farmacêuticos/metabolismo , Adjuvantes Farmacêuticos/farmacologia , Células Dendríticas , Glucose/metabolismo , Fatores Imunológicos/farmacologia , Imunoterapia , Interleucina-10 , Serina-Treonina Quinases TOR/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Vacinas/farmacologia
9.
Front Allergy ; 3: 824717, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35386656

RESUMO

Only a small fraction of proteins in plants and animals are classified as allergens. The allergenic properties are frequently attributed to certain functional characteristics of the proteins, such as a role in the plant defense against biotic and abiotic stress, to achieve the systematic acquired resistance. In line with this, eight members out of 17 functional pathogenesis-related (PR) protein families have been characterized as allergens. The present review summarizes the molecular features and allergenic significance of allergens of the PR-1 family. Not many allergens have been identified as belonging to this protein family, with most of them having a pollen origin, like mugwort or Bermuda grass. Molecular and structural features of allergenic PR-1 proteins are discussed and attributed to their IgE-reactive properties, clinical manifestation, and cross-reactivity among different foods and inhalants.

12.
Cells ; 10(12)2021 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-34943923

RESUMO

Developing new adjuvants/vaccines and better understanding their mode-of-action is an important task. To specifically improve birch pollen allergy treatment, we designed a fusion protein consisting of major birch pollen allergen Betv1 conjugated to the TLR5-ligand flagellin (rFlaA:Betv1). This study investigates the immune-modulatory effects of rFlaA:Betv1 on airway epithelial cells. LA-4 mouse lung epithelial cells were stimulated with rFlaA:Betv1 in the presence/absence of various inhibitors with cytokine- and chemokine secretion quantified by ELISA and activation of intracellular signaling cascades demonstrated by Western blot (WB). Either LA-4 cells or LA-4-derived supernatants were co-cultured with BALB/c bone marrow-derived myeloid dendritic cells (mDCs). Compared to equimolar amounts of flagellin and Betv1 provided as a mixture, rFlaA:Betv1 induced higher secretion of IL-6 and the chemokines CCL2 and CCL20 from LA-4 cells and a pronounced MAPK- and NFκB-activation. Mechanistically, rFlaA:Betv1 was taken up more strongly and the induced cytokine production was inhibited by NFκB-inhibitors, while ERK- and p38-MAPK-inhibitors only suppressed IL-6 and CCL2 secretion. In co-cultures of LA-4 cells with mDCs, rFlaA:Betv1-stimulated LA-4 cells p38-MAPK- and COX2-dependently secreted PGE2, which modulated DC responses by suppressing pro-inflammatory IL-12 and TNF-α secretion. Taken together, these results contribute to our understanding of the mechanisms underlying the strong immune-modulatory effects of flagellin-containing fusion proteins.


Assuntos
Ciclo-Oxigenase 2/metabolismo , Células Dendríticas/metabolismo , Dinoprostona/metabolismo , Células Epiteliais/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Linhagem Celular , Quimiocina CCL2/metabolismo , Quimiocina CCL20/metabolismo , Quimiocinas/metabolismo , Células Dendríticas/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Interleucina-6/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Modelos Biológicos , NF-kappa B/metabolismo , Fosforilação/efeitos dos fármacos , Solubilidade , Receptor 5 Toll-Like/metabolismo
13.
Cells ; 10(10)2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34685593

RESUMO

TLR5 ligand flagellin-containing fusion proteins are potential vaccine candidates for many diseases. A recombinant fusion protein of flagellin A and the major birch pollen allergen Bet v 1 (rFlaA:Betv1) modulates immune responses in vitro and in vivo. We studied the effects of rFlaA:Betv1 on bone marrow-derived macrophages (BMDMs). BMDMs differentiated from BALB/c, C57BL/6, TLR5-/-, or MyD88-/- mice were pre-treated with inhibitors, stimulated with rFlaA:Betv1 or respective controls, and analyzed for activation, cytokine secretion, metabolic state, RNA transcriptome, and modulation of allergen-specific Th2 responses. Stimulation of BMDMs with rFlaA:Betv1 resulted in MyD88-dependent production of IL-1ß, IL-6, TNF-α, IL-10, CD69 upregulation, and a pronounced shift towards glycolysis paralleled by activation of MAPK, NFκB, and mTOR signaling. Inhibition of either mTOR (rapamycin) or SAP/JNK-MAPK signaling (SP600125) resulted in dose-dependent metabolic suppression. In BMDM and T cell co-cultures, rFlaA:Betv1 stimulation suppressed rBet v 1-induced IL-5 and IL-13 secretion while inducing IFN-γ production. mRNA-Seq analyses showed HIF-1a, JAK, STAT, phagosome, NLR, NFκB, TNF, TLR, and chemokine signaling to participate in the interplay of cell activation, glycolysis, and immune response. rFlaA:Betv1 strongly activated BMDMs, resulting in MyD88-, MAPK-, and mTOR-dependent enhancement of glucose metabolism. Our results suggest macrophages are important target cells to consider during restauration of allergen tolerance during AIT.


Assuntos
Alérgenos/imunologia , Antígenos de Bactérias/imunologia , Antígenos de Plantas/imunologia , Flagelina/imunologia , Proteínas Recombinantes de Fusão/imunologia , Animais , Proteínas de Bactérias/imunologia , Células Cultivadas , Glucose/metabolismo , Macrófagos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas de Plantas/imunologia , Pólen/imunologia
14.
Curr Allergy Asthma Rep ; 21(10): 43, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34505973

RESUMO

PURPOSE OF REVIEW: The incidence of allergies is increasing and has been associated with several environmental factors including westernized diets. Changes in environment and nutrition can result in dysbiosis of the skin, gut, and lung microbiota altering the production of microbial metabolites, which may in turn generate epigenetic modifications. The present review addresses studies on pectin-mediated effects on allergies, including the immune modulating mechanisms by bacterial metabolites. RECENT FINDINGS: Recently, microbiota have gained attention as target for allergy intervention, especially with prebiotics, that are able to stimulate the growth and activity of certain microorganisms. Dietary fibers, which cannot be digested in the gastrointestinal tract, can alter the gut microbiota and lead to increased local and systemic concentrations of gut microbiota-derived short chain fatty acids (SCFAs). These can promote the generation of peripheral regulatory T cells (Treg) by epigenetic modulation and suppress the inflammatory function of dendritic cells (DCs) by transcriptional modulation. The dietary fiber pectin (a plant-derived polysaccharide commonly used as gelling agent and dietary supplement) can alter the ratio of Firmicutes to Bacteroidetes in gut and lung microbiota, increasing the concentrations of SCFAs in feces and sera, and reducing the development of airway inflammation by suppressing DC function. Pectin has shown immunomodulatory effects on allergies, although the underlying mechanisms still need to be elucidated. It has been suggested that the different types of pectin may exert direct and/or indirect immunomodulatory effects through different mechanisms. However, little is known about the relation of certain pectin structures to allergies.


Assuntos
Microbioma Gastrointestinal , Hipersensibilidade , Fibras na Dieta , Ácidos Graxos Voláteis , Humanos , Hipersensibilidade/tratamento farmacológico , Pectinas
15.
Cells ; 10(7)2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34359943

RESUMO

Some ß-mannans, including those in coffee bean and soy, contain a mannose backbone with ß-(1→4) bonds. Such mannooligosaccharides could have immunological functions involving direct interaction with immune cells, in addition to acting as prebiotics. This study aimed at assessing the immunological function of mannooligosaccharides with ß-(1→4) bond, and elucidating their mechanism of action using bone marrow-derived murine dendritic cells (BMDCs). When BMDCs were stimulated with the mannooligosaccharides, only ß-Man-(1→4)-Man significantly induced production of cytokines that included IL-6, IL-10, TNF-α, and IFN-ß, and enhanced CD4+ T-cell stimulatory capacity. Use of putative receptor inhibitors revealed the binding of ß-Man-(1→4)-Man to TLR4/MD2 complex and involvement with the complement C3a receptor (C3aR) for BMDC activation. Interestingly, ß-Man-(1→4)-Man prolonged the production of pro-inflammatory cytokines (IL-6 and TNF-α), but not of the IL-10 anti-inflammatory cytokine during extended culture of BMDCs, associated with high glucose consumption. The results suggest that ß-Man-(1→4)-Man is an immunostimulatory molecule, and that the promotion of glycolysis could be involved in the production of pro-inflammatory cytokine in ß-Man-(1→4)-Man-stimulated BMDCs. This study could contribute to development of immune-boosting functional foods and a novel vaccine adjuvant.


Assuntos
Células Dendríticas/efeitos dos fármacos , Mananas/farmacologia , Linfócitos T/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Citocinas/metabolismo , Células Dendríticas/imunologia , Feminino , Ativação Linfocitária/efeitos dos fármacos , Mananas/metabolismo , Camundongos , Linfócitos T/imunologia
16.
Sci Rep ; 11(1): 10141, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33980880

RESUMO

Evidence has suggested that major peanut allergen Ara h 1 activates dendritic cells (DCs) via interaction with DC-SIGN (dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin), a C-type lectin receptor, and contributes to development of peanut allergy. Since macrophages, as well as DCs, play a crucial role in innate immunity, we investigated whether natural Ara h 1 (nAra h 1) activates two different subsets of macrophages, human monocyte derived macrophage type 1 (hMDM1: pro-inflammatory model) and type 2 (hMDM2: anti-inflammatory model). hMDM1 and hMDM2 predominantly produced pro-inflammatory cytokines (IL-6 and TNF-α) and an anti-inflammatory cytokine (IL-10) in response to nAra h 1, respectively. hMDM2 took up nAra h 1 and expressed DC-SIGN at higher levels than hMDM1. However, small interfering RNA knockdown of DC-SIGN did not suppress nAra h 1 uptake and nAra h 1-mediated cytokine production in hMDM2. Inhibitors of scavenger receptor class A type I (SR-AI) suppressed the response of hMDM2, but not of hMDM1, suggesting that SR-AI is a major receptor in hMDM2 for nAra h 1 recognition and internalization. nAra h 1 appears to exert stimulatory capacity on DC and macrophages via different receptors. This study advances our understanding how a major peanut allergen interacts with innate immunity.


Assuntos
Alérgenos/imunologia , Antígenos de Plantas/imunologia , Arachis/imunologia , Plasticidade Celular/imunologia , Macrófagos/imunologia , Proteínas de Membrana/imunologia , Monócitos/imunologia , Hipersensibilidade a Amendoim/imunologia , Proteínas de Plantas/imunologia , Biomarcadores , Suscetibilidade a Doenças , Humanos , Imunofenotipagem , Ativação de Macrófagos/imunologia , Macrófagos/metabolismo , Monócitos/metabolismo , Hipersensibilidade a Amendoim/diagnóstico , Hipersensibilidade a Amendoim/metabolismo
17.
Food Chem ; 359: 129878, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33934031

RESUMO

The allergenic potency of the cricket Acheta domesticus, a promising edible insect, has never been assessed. This work aims to study the immunoreactivity of Acheta domesticus, and its cross-reactivity with the shrimp Litopenaeus vannamei, assessing the effect of cooking and gastrointestinal digestion on their allergenic properties. Different cricket proteins were detected by immunoblotting with shrimp-allergic patients' sera. Tropomyosin was identified as the most relevant IgE-binding protein, and its cross-reactivity with shrimp tropomyosin was demonstrated by ELISA. While shrimp tropomyosin showed scarce stability to gastric digestion, cricket tropomyosin withstood the whole digestion process. The sarcoplasmic calcium-binding protein, specifically detected in shrimp, showed exceptional stability to gastrointestinal digestion. IgE-binding proteins in a model of enriched baked products were partially protected from proteolysis. In conclusion, the ingestion of A. domesticus proteins poses serious concerns to the Crustacean-allergic population. The high stability of tropomyosin may represent a risk of primary sensitization and clinical cross-reactivity.


Assuntos
Alérgenos/análise , Hipersensibilidade Alimentar , Gryllidae/imunologia , Imunoglobulina E/análise , Penaeidae/química , Frutos do Mar/análise , Animais , Proteínas de Ligação ao Cálcio/imunologia , Reações Cruzadas , Digestão , Ensaio de Imunoadsorção Enzimática , Manipulação de Alimentos , Gryllidae/química , Humanos , Immunoblotting , Tropomiosina/imunologia
18.
Artigo em Inglês | MEDLINE | ID: mdl-33771708

RESUMO

Plant lipid transfer proteins are a large family that can be found in all land plants. They have a hydrophobic cavity that allows them to harbor lipids and facilitates their traffic between membranes. However, in humans, this plant protein family is responsible for the main food allergies in the Mediterranean area. Nevertheless, not only the protein itself but also its ligand is relevant for allergic sensitization. The main aim of the present work is to analyse the natural ligands carried by four allergenic LTPs (Tri a 14, Art v 3, Par j 2, and Ole e 7), compared with the previously identified ligand of Pru p 3 (CPT-PHS ligand), and clarify their role within the immunological reactions. Results showed that the ligands of the LTPs studied shared a chemical identity, in which the presence of a polar head was essential to the protein-ligand binding. This ligand was transported through a skin cellular model, and phosphorylated phytosphingosine could be detected as result of cell metabolism. Since sphingosine kinase 1 was overexpressed in keratinocytes incubated with the LTP-ligand complex, this enzyme might be responsible for the phosphorylation of the phytosphingosine fraction of the CPT-PHS ligand. This way, phytosphingosine-1-phosphate could be mimicking the role of the human inflammatory mediator sphingosine-1-phosphate, explaining why LTPs are associated with more severe allergic responses. In conclusion, this work contributes to the understanding of the chemical nature and behavior of lipid ligands carried by allergens, which would help to gain insight into their role during allergic sensitization.


Assuntos
Alérgenos/imunologia , Alérgenos/metabolismo , Proteínas de Transporte/metabolismo , Alérgenos/química , Sequência de Aminoácidos , Hipersensibilidade Alimentar , Ligantes
19.
Curr Allergy Asthma Rep ; 21(2): 7, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33537877

RESUMO

PURPOSE OF REVIEW: To provide an overview of the prevalence and clinical manifestation of non-specific lipid transfer proteins (LTP)-mediated allergies outside the Mediterranean area and to address potential reasons for the different geographical significance of LTP-driven allergies. RECENT FINDINGS: LTPs are major allergens in the Mediterranean area, which frequently can elicit severe reactions. Pru p 3 the LTP from peach is reported as genuine allergen and is considered a prototypic marker for LTP-mediated allergies. However, both food and pollen LTP allergies exist outside the Mediterranean area, but with lower clinical significance, different immunogenicity, and less clarified role. Evidence has been reported that in areas with high exposure to pollen, in particular to mugwort, pollen-derived LTPs can act as a primary sensitizer to trigger secondary food allergies. Co-sensitization to unrelated allergens might be causative for less severe reactions in response to LTPs. However, the reason for the geographical different sensitization patterns to LTPs remains unclear.


Assuntos
Alérgenos/imunologia , Antígenos de Plantas/imunologia , Proteínas de Transporte/imunologia , Hipersensibilidade Alimentar/imunologia , Proteínas de Plantas/imunologia , Pólen/imunologia , Artemisia/imunologia , Reações Cruzadas , Hipersensibilidade Alimentar/epidemiologia , Humanos , Imunoglobulina E/imunologia , Prevalência
20.
Foods ; 11(1)2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35010137

RESUMO

Pectin, a dietary fiber, is a polysaccharide that is widely used in food industry as a gelling agent. In addition, prebiotic and beneficial immunomodulatory effects of pectin have been demonstrated, leading to increased importance as food supplement. However, as cases of anaphylactic reactions after consumption of pectin-supplemented foods have been reported, the present study aims to evaluate the allergy risk of pectin. This is of particular importance since most of the pectin used in the food industry is extracted from citrus or apple pomace. Both contain several allergens such as non-specific lipid transfer proteins (nsLTPs), known to induce severe allergic reactions, which could impair the use of pectins in nsLTP allergic patients. Therefore, the present study for the first time was performed to analyze residual nsLTP content in two commercial pectins using different detection methods. Results showed the analytical sensitivity was diminished by the pectin structure. Finally, spiking of pectin with allergenic peach nsLTP Pru p 3 led to the conclusion that the potential residual allergen content in both pectins is below the threshold to induce anaphylactic reactions in nsLTP-allergic patients. This data suggests that consumption of the investigated commercial pectin products provides no risk for inducing severe reactions in nsLTP-allergic patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...