Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 469(7328): 68-71, 2011 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-21179086

RESUMO

Shell structure and magic numbers in atomic nuclei were generally explained by pioneering work that introduced a strong spin-orbit interaction to the nuclear shell model potential. However, knowledge of nuclear forces and the mechanisms governing the structure of nuclei, in particular far from stability, is still incomplete. In nuclei with equal neutron and proton numbers (N = Z), enhanced correlations arise between neutrons and protons (two distinct types of fermions) that occupy orbitals with the same quantum numbers. Such correlations have been predicted to favour an unusual type of nuclear superfluidity, termed isoscalar neutron-proton pairing, in addition to normal isovector pairing. Despite many experimental efforts, these predictions have not been confirmed. Here we report the experimental observation of excited states in the N = Z = 46 nucleus (92)Pd. Gamma rays emitted following the (58)Ni((36)Ar,2n)(92)Pd fusion-evaporation reaction were identified using a combination of state-of-the-art high-resolution γ-ray, charged-particle and neutron detector systems. Our results reveal evidence for a spin-aligned, isoscalar neutron-proton coupling scheme, different from the previous prediction. We suggest that this coupling scheme replaces normal superfluidity (characterized by seniority coupling) in the ground and low-lying excited states of the heaviest N = Z nuclei. Such strong, isoscalar neutron-proton correlations would have a considerable impact on the nuclear level structure and possibly influence the dynamics of rapid proton capture in stellar nucleosynthesis.

2.
Science ; 298(5598): 1596-600, 2002 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-12446903

RESUMO

Plasmas are an attractive medium for the next generation of particle accelerators because they can support electric fields greater than several hundred gigavolts per meter. These accelerating fields are generated by relativistic plasma waves-space-charge oscillations-that can be excited when a high-intensity laser propagates through a plasma. Large currents of background electrons can then be trapped and subsequently accelerated by these relativistic waves. In the forced laser wake field regime, where the laser pulse length is of the order of the plasma wavelength, we show that a gain in maximum electron energy of up to 200 megaelectronvolts can be achieved, along with an improvement in the quality of the ultrashort electron beam.

7.
Phys Rev Lett ; 60(10): 913-916, 1988 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-10037889
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...