Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-36834405

RESUMO

Currently, approximately 8 million adult Americans use electronic cigarettes (e-cigs) daily, including women of childbearing age. It is known that more than 10% of women smoke during their pregnancy, and recent surveys show that rates of maternal vaping are similar to rates of maternal cigarette smoking. However, the effects of inhaling e-cig aerosol on the health of fetuses remain unknown. The objective of the present study was to increase our understanding of the molecular effects caused by in utero exposures to e-cig aerosols on developing mouse lungs and, later in life, on the offspring's susceptibility to developing asthma. METHODS: Pregnant mice were exposed throughout gestation to either filtered air or vanilla-flavored e-cig aerosols containing 18 mg/mL of nicotine. Male and female exposed mouse offspring were sacrificed at birth, and then the lung transcriptome was evaluated. Additionally, once sub-groups of male offspring mice reached 4 weeks of age, they were challenged with house dust mites (HDMs) for 3 weeks to assess asthmatic responses. RESULTS: The lung transcriptomic responses of the mouse offspring at birth showed that in utero vanilla-flavored e-cig aerosol exposure significantly regulated 88 genes in males (62 genes were up-regulated and 26 genes were down-regulated), and 65 genes were significantly regulated in females (17 genes were up-regulated and 48 genes were down-regulated). Gene network analyses revealed that in utero e-cig aerosol exposure affected canonical pathways associated with CD28 signaling in T helper cells, the role of NFAT in the regulation of immune responses, and phospholipase C signaling in males, whereas the dysregulated genes in the female offspring were associated with NRF2-mediated oxidative stress responses. Moreover, we found that in utero exposures to vanilla-flavored e-cig aerosol exacerbated HDM-induced asthma in 7-week-old male mouse offspring compared to respective in utero air + HDM controls. CONCLUSIONS: Overall, these data demonstrate that in utero e-cig aerosol exposure alters the developing mouse lung transcriptome at birth in a sex-specific manner and provide evidence that the inhalation of e-cig aerosols is detrimental to the respiratory health of offspring by increasing the offspring' susceptibility to developing lung diseases later in life.


Assuntos
Asma , Sistemas Eletrônicos de Liberação de Nicotina , Vanilla , Gravidez , Animais , Feminino , Masculino , Camundongos , Transcriptoma , Aerossóis e Gotículas Respiratórios , Pulmão , Asma/metabolismo
3.
Toxicology ; 477: 153272, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35878681

RESUMO

There are few reports concerning electronic nicotine delivery system (ENDS) use during pregnancy and no studies on asthma in prenatally JUUL-exposed offspring. Here, we tested the hypothesis that in utero JUUL exposure causes unfavorable birth outcomes and lasting pulmonary health effects in adult offspring. BALB/c dams were exposed to either air or mint-flavored JUUL aerosol, 1-hr/d, 20 consecutive days during gestation. Offspring were sacrificed on post-natal day (PND) 0 or at 11-week of age, following house dust mite (HDM) challenge. Gene expression was assessed in the uterine/placental tissue of the dams and lung responses were assessed in offspring at PND0 and at 11 weeks of age. JUUL-exposed offspring exhibited decreased body weights and lengths at PND0. These birth outcomes were accompanied by dysregulation of 54 genes associated with hypoxia and oxidative stress in the uterine/placental tissues of JUUL-exposed dams, as well as 24 genes in the lungs of the offspring related to Wnt signaling, plus 9 genes related to epigenetics, and 7 genes related to inflammation. At 11 weeks of age, JUUL + HDM exposed mice exhibited pulmonary inflammation when compared to their respective air + HDM controls. Additionally, the JUUL + HDM exposure dysregulated several genes associated with allergies and asthma. Further, the JUUL + HDM females showed decreased methylation of the promoter region of the Il10ra gene. Taken together, our mouse model shows that inhalation of JUUL aerosols during pregnancy affects the intrauterine environment, impairs lung development, and heightens the effects of allergic airway responses later in life.


Assuntos
Asma , Mentha , Efeitos Tardios da Exposição Pré-Natal , Animais , Asma/induzido quimicamente , Modelos Animais de Doenças , Feminino , Humanos , Pulmão , Camundongos , Camundongos Endogâmicos BALB C , Placenta , Gravidez , Pyroglyphidae , Aerossóis e Gotículas Respiratórios
5.
Am J Respir Cell Mol Biol ; 55(4): 586-601, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27253086

RESUMO

Cigarette smoke (CS) predisposes exposed individuals to respiratory infections not only by suppressing immune response but also by enhancing the virulence of pathogenic bacteria. As per our observations, in methicillin-resistant Staphylococcus aureus strain USA300, CS extract (CSE) potentiates biofilm formation via the down-regulation of quorum-sensing regulon accessory gene regulator. Because accessory gene regulator is a global regulator of the staphylococcal virulome, in the present study we sought to identify the effects of CS exposure on staphylococcal gene expression using RNAseq. Comparative analysis of RNAseq profiles revealed the up-regulation of important virulence genes encoding surface adhesins (fibronectin- and fibrinogen-binding proteins A and B and clumping factor B) and proteins involved in immune evasion, such as staphylocoagulase, staphylococcal protein A, and nuclease. In concurrence with the RNAseq data, we observed: (1) significant up-regulation of the ability of CSE-exposed USA300 to evade phagocytosis by macrophages and neutrophils, a known function of staphylococcal protein A; and (2) twofold higher (P < 0.001) number of CSE-exposed USA300 escaping neutrophil extracellular trap-mediated killing by neutrophils as a result of CS-mediated induction of nuclease. Importantly, in three different mouse strains, C57BL6/J, Balb/C, and A/J, we observed significantly higher pulmonary bacterial burden in animals infected with CSE-exposed USA300 as compared with medium-exposed control USA300. Taken together, these observations indicate that bioactive chemicals in CS induce hypervirulence by augmenting the ability of USA300 to evade bactericidal functions of leukocytes, such as phagocytosis and neutrophil extracellular trap-mediated killing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...