Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EFSA J ; 21(8): e08173, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37533748

RESUMO

Vector or reservoir species of five mollusc diseases listed in the Animal Health Law were identified, based on evidence generated through an extensive literature review, to support a possible updating of Regulation (EU) 2018/1882. Mollusc species on or in which Mikrocytos mackini, Perkinsus marinus, Bonamia exitiosa, Bonamia ostreae and Marteilia refringens were detected, in the field or during experiments, were classified as reservoir species with different levels of certainty depending on the diagnostic tests used. Where experimental evidence indicated transmission of the pathogen from a studied species to another known susceptible species, this studied species was classified as a vector species. Although the quantification of the risk of spread of the pathogens by the vectors or reservoir species was not part of the terms of reference, such risks do exist for the vector species, since transmission from infected vector species to susceptible species was proven. Where evidence for transmission from infected molluscs was not found, these were defined as reservoir. Nonetheless, the risk of the spread of the pathogens from infected reservoir species cannot be excluded. Evidence identifying conditions that may prevent transmission by vectors or reservoir mollusc species during transport was collected from scientific literature. It was concluded that it is very likely to almost certain (90-100%) that M. mackini, P. marinus, B. exitiosa B. ostreae and M. refringens will remain infective at any possible transport condition. Therefore, vector or reservoir species that may have been exposed to these pathogens in an affected area in the wild or at aquaculture establishments or through contaminated water supply can possibly transmit these pathogens. For transmission of M. refringens, the presence of an intermediate host, a copepod, is necessary.

2.
EFSA J ; 21(8): e08172, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37533749

RESUMO

Vector or reservoir species of three diseases of crustaceans listed in the Animal Health Law were identified based on evidence generated through an extensive literature review, to support a possible updating of Regulation (EU) 2018/1882. Crustacean species on or in which Taura syndrome virus (TSV), Yellow head virus (YHV) or White spot syndrome virus (WSSV) were identified, in the field or during experiments, were classified as reservoir species with different levels of certainty depending on the diagnostic tests used. Where experimental evidence indicated transmission of the pathogen from a studied species to another known susceptible species, the studied species was classified as vector species. Although the quantification of the risk of spread of the pathogens by the vectors or reservoir species was not part of the terms of reference, such risks do exist for the vector species, since transmission from infected vector species to susceptible species was proven. Where evidence for transmission from infected crustaceans was not found, these were defined as reservoirs. Nonetheless, the risk of the spread of the pathogens from infected reservoir species cannot be excluded. Evidence identifying conditions that may prevent transmission by vectors during transport was collected from scientific literature. It was concluded that it is very likely to almost certain (90-100%) that WSSV, TSV and YHV will remain infective at any possible transport condition. Therefore, vector or reservoir species that may have been exposed to these pathogens in an affected area in the wild or aquaculture establishments or by water supply can possibly transmit WSSV, TSV and YHV.

3.
EFSA J ; 21(8): e08174, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37533750

RESUMO

Vector or reservoir species of five fish diseases listed in the Animal Health Law were identified, based on evidence generated through an extensive literature review (ELR), to support a possible updating of Regulation (EU) 2018/1882. Fish species on or in which highly polymorphic region-deleted infectious salmon anaemia virus (HPR∆ ISAV), Koi herpes virus (KHV), epizootic haematopoietic necrosis virus (EHNV), infectious haematopoietic necrosis virus (IHNV) or viral haemorrhagic septicaemia virus (VHSV) were detected, in the field or during experiments, were classified as reservoir species with different levels of certainty depending on the diagnostic tests used. Where experimental evidence indicated transmission of the pathogen from a studied species to another known susceptible species, the studied species was classified as a vector species. Although the quantification of the risk of spread of the pathogens by the vectors or reservoir species was not part of the terms or reference, such risks do exist for the vector species, since transmission from infected vector species to susceptible species was proven. Where evidence for transmission from infected fish was not found, these were defined as reservoirs. Nonetheless, the risk of the spread of the pathogens from infected reservoir species cannot be excluded. Evidence identifying conditions that may prevent transmission by vectors or reservoir fish species during transport was collected from scientific literature. For VHSV, IHNV or HPR∆ ISAV, it was concluded that under transport conditions at temperatures below 25°C, it is likely (66-90%) they will remain infective. Therefore, vector or reservoir species that may have been exposed to these pathogens in an affected area in the wild, aquaculture establishments or through water supply can possibly transmit VHSV, IHNV or HPR∆ ISAV into a non-affected area when transported at a temperature below 25°C. The conclusion was the same for EHN and KHV; however, they are likely to remain infective under all transport temperatures.

5.
FEMS Microbiol Ecol ; 98(9)2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-35906195

RESUMO

Rhizobiales are well-known plant-root nitrogen-fixing symbionts, but the functions of insect-associated Rhizobiales are poorly understood. We obtained genomes of three strains associated with Acromyrmex leaf-cutting ants and show that, in spite of being extracellular gut symbionts, they lost all pathways for essential amino acid biosynthesis, making them fully dependent on their hosts. Comparison with 54 Rhizobiales genomes showed that all insect-associated Rhizobiales lost the ability to fix nitrogen and that the Acromyrmex symbionts had exceptionally also lost the urease genes. However, the Acromyrmex strains share biosynthesis pathways for riboflavin vitamin, queuosine and a wide range of antioxidant enzymes likely to be beneficial for the ant fungus-farming symbiosis. We infer that the Rhizobiales symbionts catabolize excess of fungus-garden-derived arginine to urea, supplementing complementary Mollicutes symbionts that turn arginine into ammonia and infer that these combined symbiont activities stabilize the fungus-farming mutualism. Similar to the Mollicutes symbionts, the Rhizobiales species have fully functional CRISPR/Cas and R-M phage defenses, suggesting that these symbionts are important enough for the ant hosts to have precluded the evolution of metabolically cheaper defenseless strains.


Assuntos
Alphaproteobacteria , Formigas , Animais , Arginina , Fungos , Nitrogênio , Filogenia , Simbiose
6.
Artigo em Inglês | MEDLINE | ID: mdl-35640792

RESUMO

Subzero temperatures are among the most significant factors defining the distribution of organisms, yet, certain taxa have evolved to overcome this barrier. The microscopic tardigrades are among the most freeze-tolerant animals, with selected species reported to survive milli-Kelvin temperatures. Here, we estimate survival of fully hydrated eutardigrades of the species Ramazzottius varieornatus following exposures to -20 °C and  -80 °C as well as -196 °C with or without initial cooling to -80 °C. The tardigrades easily survive these temperatures, yet with a significant decrease in viability following rapid cooling by direct exposure to -196 °C. Hence, post-freeze recovery of R. varieornatus seems to rely on cooling rate and thus controlled ice formation. Cryophilic organisms are renowned for having cold-active enzymes that secure appropriate reaction rates at low temperatures. Hence, extreme freeze-tolerance in R. varieornatus could potentially involve syntheses of cryoprotectants and de novo transcription. We therefore generated a reference transcriptome for this cryophilic R. varieornatus population and explored for differential gene expression patterns following cooling to -80 °C as compared to active 5 °C controls. Specifically, we tested for fast transcription potentially occurring within 25 min of cooling from room temperature to a supercooling point of ca. -20 °C, at which the tardigrades presumably freeze and enter into the ametabolic state of cryobiosis. Our analyses revealed no evidence for differential gene expression. We, therefore, conclude that extreme freeze-tolerance in R. varieornatus relies on controlled extracellular freezing with any freeze-tolerance related genes being constitutively expressed.


Assuntos
Gelo , Tardígrados , Animais , Temperatura Baixa , Congelamento , Tardígrados/genética , Temperatura
7.
BMC Biol ; 19(1): 205, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34526023

RESUMO

BACKGROUND: The cuticular microbiomes of Acromyrmex leaf-cutting ants pose a conundrum in microbiome biology because they are freely colonisable, and yet the prevalence of the vertically transmitted bacteria Pseudonocardia, which contributes to the control of Escovopsis fungus garden disease, is never compromised by the secondary acquisition of other bacterial strains. Game theory suggests that competition-based screening can allow the selective recruitment of antibiotic-producing bacteria from the environment, by providing abundant resources to foment interference competition between bacterial species and by using Pseudonocardia to bias the outcome of competition in favour of antibiotic producers. RESULTS: Here, we use RNA-stable isotope probing (RNA-SIP) to confirm that Acromyrmex ants can maintain a range of microbial symbionts on their cuticle by supplying public resources. We then used RNA sequencing, bioassays, and competition experiments to show that vertically transmitted Pseudonocardia strains produce antibacterials that differentially reduce the growth rates of other microbes, ultimately biassing the bacterial competition to allow the selective establishment of secondary antibiotic-producing strains while excluding non-antibiotic-producing strains that would parasitise the symbiosis. CONCLUSIONS: Our findings are consistent with the hypothesis that competition-based screening is a plausible mechanism for maintaining the integrity of the co-adapted mutualism between the leaf-cutting ant farming symbiosis and its defensive microbiome. Our results have broader implications for explaining the stability of other complex symbioses involving horizontal acquisition.


Assuntos
Microbiota , Animais , Antibacterianos/farmacologia , Formigas , Evolução Biológica , RNA , Simbiose
9.
Nat Commun ; 12(1): 2918, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34006882

RESUMO

Inquiline ants are highly specialized and obligate social parasites that infiltrate and exploit colonies of closely related species. They have evolved many times convergently, are often evolutionarily young lineages, and are almost invariably rare. Focusing on the leaf-cutting ant genus Acromyrmex, we compared genomes of three inquiline social parasites with their free-living, closely-related hosts. The social parasite genomes show distinct signatures of erosion compared to the host lineages, as a consequence of relaxed selective constraints on traits associated with cooperative ant colony life and of inquilines having very small effective population sizes. We find parallel gene losses, particularly in olfactory receptors, consistent with inquiline species having highly reduced social behavioral repertoires. Many of the genomic changes that we uncover resemble those observed in the genomes of obligate non-social parasites and intracellular endosymbionts that branched off into highly specialized, host-dependent niches.


Assuntos
Formigas/genética , Genoma de Inseto/genética , Parasitos/genética , Comportamento Social , Animais , Formigas/classificação , Formigas/fisiologia , Evolução Molecular , Feminino , Rearranjo Gênico/genética , Genômica/métodos , Interações Hospedeiro-Parasita , Proteínas de Insetos/classificação , Proteínas de Insetos/genética , Masculino , Parasitos/classificação , Parasitos/fisiologia , Filogenia , Receptores Odorantes/classificação , Receptores Odorantes/genética , Especificidade da Espécie
10.
Elife ; 102021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33433325

RESUMO

The symbiotic partnership between leaf-cutting ants and fungal cultivars processes plant biomass via ant fecal fluid mixed with chewed plant substrate before fungal degradation. Here we present a full proteome of the fecal fluid of Acromyrmex leaf-cutting ants, showing that most proteins function as biomass degrading enzymes and that ca. 85% are produced by the fungus and ingested, but not digested, by the ants. Hydrogen peroxide producing oxidoreductases were remarkably common in the proteome, inspiring us to test a scenario in which hydrogen peroxide reacts with iron to form reactive oxygen radicals after which oxidized iron is reduced by other fecal-fluid enzymes. Our biochemical assays confirmed that these so-called Fenton reactions do indeed take place in special substrate pellets, presumably to degrade plant cell wall polymers. This implies that the symbiotic partnership manages a combination of oxidative and enzymatic biomass degradation, an achievement that surpasses current human bioconversion technology.


Colonies of tropical leaf-cutting ants live in underground nests where a fungus grows that feeds them. The ants, in turn, provide the fungus with the freshly-cut leaf fragments it needs for nutrition. The relationship between the ants and the fungus, in which they live close together and help one another survive, is known as symbiosis. It is an ancient, extremely well integrated relationship, in which neither species can survive without the other. However, the details of how the ants and the fungus work together to break down the leaf fragments so they can be used for nutrition are not well understood. When the ants eat the fungus, they do not digest its enzymes (the proteins that accelerate chemical reactions in a cell). Instead, the fungal enzymes travel through the ants' gut and into their fecal liquid, which gets deposited on the fresh-cut leaves when the ants collect them. The ants then make temporary pellets out of the new leaf fragments before providing them to the fungus. To better understand how each species contributes to the breakdown of the leaf fragments, Schiøtt and Boomsma identified all the proteins present in the fecal fluid of the ants. Once they had a complete list of about 100 proteins, they determined which of them were produced by the fungus and which by the ant. Schiøtt and Boomsma observed that certain combinations of fungal and ant enzymes could trigger a Fenton reaction ­ a chemical reaction that efficiently begins the breakdown of the tough walls around plant cells. This reaction is so aggressive that it is rarely found in nature, but it could help explain the high efficiency of the fungus and the ants symbiotically processing leaf fragments. But could a Fenton reaction actually proceed in the ants' nest without hurting the ants or affecting the rest of the fungal garden? The evidence obtained suggested that the temporary pellets made by the ants serve to isolate the reaction, so the aggressive chemistry takes place away from the ants and detached from the fungal gardens. Schiøtt and Boomsma showed that the symbiotic relationship between the ants and the fungus has led to a sustainable and efficient way of breaking down plant materials to use them for nutrition. The Fenton reaction is economically important in many industries, including bioethanol production, the detergent industry, and food production. Emulating the methods used by leaf-cutting ants, which have been fine-tuned by millions of years of natural selection, may allow humans to develop more efficient technologies for breaking down organic compounds.


Assuntos
Formigas/metabolismo , Proteínas de Insetos/metabolismo , Proteoma/metabolismo , Animais , Formigas/enzimologia , Biomassa , Peróxido de Hidrogênio/química , Ferro/química , Proteômica
11.
J Evol Biol ; 33(12): 1770-1782, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33030255

RESUMO

Genomic imprinting results in parent-of-origin-dependent gene expression biased towards either the maternally or paternally derived allele at the imprinted locus. The kinship theory of genomic imprinting argues that this unusual expression pattern can be a manifestation of intra-genomic conflict between the maternally and paternally derived halves of the genome that arises because they are not equally related to the genomes of social partners. The theory thus predicts that imprinting may evolve wherever there are close interactions among asymmetrically related kin. The social Hymenoptera with permanent caste differentiation are suitable candidates for testing the kinship theory because haplodiploid sex determination creates strong relatedness asymmetries and nursing workers interact closely with kin. However, progress in the search for imprinted genes in the social Hymenoptera has been slow, in part because tests for imprinting rely on reciprocal crosses that are impossible in most species. Here, we develop a method to systematically search for imprinting in haplodiploid social insects without crosses, using instead samples of pooled individuals collected from natural colonies. We tested this protocol using data available for the leaf-cutting ant Acromyrmex echinatior, providing the first genome-wide search for imprinting in any ant. Although we identified several genes as potentially imprinted, none of the four genes tested could be verified as imprinted using digital droplet PCR, highlighting the need for higher quality genomic assemblies that accurately map duplicated genes.


Assuntos
Formigas/genética , Impressão Genômica , Animais , Feminino , Genes de Insetos , Masculino , Modelos Genéticos , Análise de Sequência de RNA
12.
Elife ; 82019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31500699

RESUMO

Queens of social insects make all mate-choice decisions on a single day, except in honeybees whose queens can conduct mating flights for several days even when already inseminated by a number of drones. Honeybees therefore appear to have a unique, evolutionarily derived form of sexual conflict: a queen's decision to pursue risky additional mating flights is driven by later-life fitness gains from genetically more diverse worker-offspring but reduces paternity shares of the drones she already mated with. We used artificial insemination, RNA-sequencing and electroretinography to show that seminal fluid induces a decline in queen vision by perturbing the phototransduction pathway within 24-48 hr. Follow up field trials revealed that queens receiving seminal fluid flew two days earlier than sister queens inseminated with saline, and failed more often to return. These findings are consistent with seminal fluid components manipulating queen eyesight to reduce queen promiscuity across mating flights.


Assuntos
Abelhas/fisiologia , Fatores Biológicos/metabolismo , Voo Animal , Sêmen/química , Comportamento Sexual Animal , Sobrevida , Visão Ocular/efeitos dos fármacos , Animais , Eletrorretinografia , Análise de Sequência de RNA
13.
BMC Genomics ; 20(1): 607, 2019 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-31340759

RESUMO

BACKGROUND: Tardigrades are renowned for their ability to enter cryptobiosis (latent life) and endure extreme stress, including desiccation and freezing. Increased focus is on revealing molecular mechanisms underlying this tolerance. Here, we provide the first transcriptomes from the heterotardigrade Echiniscoides cf. sigismundi and the eutardigrade Richtersius cf. coronifer, and compare these with data from other tardigrades and six eukaryote models. Investigating 107 genes/gene families, our study provides a thorough analysis of tardigrade gene content with focus on stress tolerance. RESULTS: E. cf. sigismundi, a strong cryptobiont, apparently lacks expression of a number of stress related genes. Most conspicuous is the lack of transcripts from genes involved in classical Non-Homologous End Joining. Our analyses suggest that post-cryptobiotic survival in tardigrades could rely on high fidelity transcription-coupled DNA repair. Tardigrades seem to lack many peroxins, but they all have a comprehensive number of genes encoding proteins involved in antioxidant defense. The "tardigrade unique proteins" (CAHS, SAHS, MAHS, RvLEAM), seem to be missing in the heterotardigrade lineage, revealing that cryptobiosis in general cannot be attributed solely to these proteins. Our investigation further reveals a unique and highly expressed cold shock domain. We hypothesize that the cold shock protein acts as a RNA-chaperone involved in regulation of translation following freezing. CONCLUSIONS: Our results show common gene family contractions and expansions within stress related gene pathways in tardigrades, but also indicate that evolutionary lineages have a high degree of divergence. Different taxa and lineages may exhibit unique physiological adaptations towards stress conditions involving possible unknown functional homologues and/or novel physiological and biochemical mechanisms. To further substantiate the current results genome assemblies coupled with transcriptome data and experimental investigations are needed from tardigrades belonging to different evolutionary lineages.


Assuntos
Tardígrados/classificação , Tardígrados/fisiologia , Transcriptoma , Animais , Evolução Biológica , Reparo do DNA , Família Multigênica , RNA-Seq , Estresse Fisiológico
14.
mSphere ; 4(3)2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-31092601

RESUMO

Termites forage on a range of substrates, and it has been suggested that diet shapes the composition and function of termite gut bacterial communities. Through comparative analyses of gut metagenomes in nine termite species with distinct diets, we characterize bacterial community compositions and use peptide-based functional annotation method to determine biomass-degrading enzymes and the bacterial taxa that encode them. We find that fungus-growing termite guts have relatively more fungal cell wall-degrading enzyme genes, while wood-feeding termite gut communities have relatively more plant cell wall-degrading enzyme genes. Interestingly, wood-feeding termite gut bacterial genes code for abundant chitinolytic enzymes, suggesting that fungal biomass within the decaying wood likely contributes to gut bacterial or termite host nutrition. Across diets, the dominant biomass-degrading enzymes are predominantly coded for by the most abundant bacterial taxa, suggesting tight links between diet and gut community composition, with the most marked difference being the communities coding for the mycolytic capacity of the fungus-growing termite gut.IMPORTANCE Understanding functional capacities of gut microbiomes is important to improve our understanding of symbiotic associations. Here, we use peptide-based functional annotation to show that the gut microbiomes of fungus-farming termites code for a wealth of enzymes that likely target the fungal diet the termites eat. Comparisons to other termites showed that fungus-growing termite guts have relatively more fungal cell wall-degrading enzyme genes, whereas wood-feeding termite gut communities have relatively more plant cell wall-degrading enzyme genes. Across termites with different diets, the dominant biomass-degrading enzymes are predominantly coded for by the most abundant bacterial taxa, suggesting tight links between diet and gut community compositions.


Assuntos
Dieta , Fungos/crescimento & desenvolvimento , Microbioma Gastrointestinal , Isópteros/enzimologia , Isópteros/microbiologia , Animais , Bactérias/enzimologia , Bactérias/genética , Trato Gastrointestinal/enzimologia , Trato Gastrointestinal/microbiologia , Metagenoma , Filogenia , Células Vegetais/metabolismo , Análise de Sequência de DNA , Simbiose , Madeira/metabolismo
15.
Fungal Biol ; 123(3): 183-187, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30798873

RESUMO

There are few environments more hostile and species-poor than deserts and the mounds of Nasutitermitinae termites. However, despite the very different adaptations required to survive in such extreme and different environments, the fungal genus Podaxis is capable of surviving in both: where few other fungi are reported to grow. Despite their prominence in the landscape and their frequent documentation by early explorers, there has been relatively little research into the genus. Originally described by Linnaeus in 1771, in the early 20th Century, the then ∼25 species of Podaxis were almost entirely reduced into one species: Podaxis pistillaris. Since this reduction, several new species of Podaxis have been described but without consideration of older descriptions. This has resulted in 44 recognised species names in Index Fungorum but the vast majority of studies and fungarium specimens still refer to P. pistillaris. Studies of Podaxis' extremely different lifestyles is hampered by its effective reduction to a single-species genus. Here we examine the history of the taxonomy of Podaxis before focusing on its extreme lifestyles. From this, we consider how the muddled taxonomy of Podaxis may be resolved; opening up further avenues for future research into this enigmatic fungal genus.


Assuntos
Agaricales/classificação , Clima Desértico , Microbiologia Ambiental , Agaricales/crescimento & desenvolvimento
16.
Mol Ecol ; 28(4): 879-899, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30411820

RESUMO

The attine ants are a monophyletic lineage that switched to fungus farming ca. 55-60 MYA. They have become a model for the study of complex symbioses after additional fungal and bacterial symbionts were discovered, but their abdominal endosymbiotic bacteria remain largely unknown. Here, we present a comparative microbiome analysis of endosymbiotic bacteria spanning the entire phylogenetic tree. We show that, across 17 representative sympatric species from eight genera sampled in Panama, abdominal microbiomes are dominated by Mollicutes, α- and γ-Proteobacteria, and Actinobacteria. Bacterial abundances increase from basal to crown branches in the phylogeny reflecting a shift towards putative specialized and abundant abdominal microbiota after the ants domesticated gongylidia-bearing cultivars, but before the origin of industrial-scale farming based on leaf-cutting herbivory. This transition coincided with the ancestral single colonization event of Central/North America ca. 20 MYA, documented in a recent phylogenomic study showing that almost the entire crown group of the higher attine ants, including the leaf-cutting ants, evolved there and not in South America. Several bacterial species are located in gut tissues or abdominal organs of the evolutionarily derived, but not the basal attine ants. The composition of abdominal microbiomes appears to be affected by the presence/absence of defensive antibiotic-producing actinobacterial biofilms on the worker ants' cuticle, but the significance of this association remains unclear. The patterns of diversity, abundance and sensitivity of the abdominal microbiomes that we obtained explore novel territory in the comparative analysis of attine fungus farming symbioses and raise new questions for further in-depth research.


Assuntos
Formigas/microbiologia , Actinobacteria/fisiologia , Alphaproteobacteria/fisiologia , Animais , Microscopia Confocal , Filogenia , Simbiose/fisiologia , Tenericutes/fisiologia
17.
Elife ; 72018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30454555

RESUMO

Mollicutes, a widespread class of bacteria associated with animals and plants, were recently identified as abundant abdominal endosymbionts in healthy workers of attine fungus-farming leaf-cutting ants. We obtained draft genomes of the two most common strains harbored by Panamanian fungus-growing ants. Reconstructions of their functional significance showed that they are independently acquired symbionts, most likely to decompose excess arginine consistent with the farmed fungal cultivars providing this nitrogen-rich amino-acid in variable quantities. Across the attine lineages, the relative abundances of the two Mollicutes strains are associated with the substrate types that foraging workers offer to fungus gardens. One of the symbionts is specific to the leaf-cutting ants and has special genomic machinery to catabolize citrate/glucose into acetate, which appears to deliver direct metabolic energy to the ant workers. Unlike other Mollicutes associated with insect hosts, both attine ant strains have complete phage-defense systems, underlining that they are actively maintained as mutualistic symbionts.


Assuntos
Formigas/microbiologia , Simbiose , Tenericutes/fisiologia , Acetatos/metabolismo , Animais , Arginina/metabolismo , Biotransformação , Citratos/metabolismo , Glucose/metabolismo , Intestinos/microbiologia
18.
J Exp Biol ; 221(Pt 6)2018 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-29444846

RESUMO

Leaf-cutting ant queens mate with multiple males during a single nuptial flight and store sperm for up to two decades. During mating, males transfer sperm from their accessory testes to the queen bursa copulatrix from where it enters the spermatheca, an insect sperm storage organ that has become highly specialized in long-lived ant queens who never re-mate later in life. Long-term storage without the possibility to obtain new sperm creates an immune defence dilemma, because recognition of non-self cells eliminates infections but may also target irreplaceable sperm and reduce lifetime reproductive success. We therefore hypothesized that non-specific immune responses, like pathogen melanization, should be silenced in the spermatheca, because they rely on general non-self recognition, and that specific responses such as antimicrobial peptides are activated instead as they specifically target pathogenic bacteria and/or fungi. The maintenance of uninfected sperm cells by males before mating is not constrained by non-self recognition, meaning immune regulation might be more liberal in male reproductive organs. To test this hypothesis, we measured gene expression of two antimicrobial peptides, abaecin and defensin, and prophenoloxidase, an important enzyme of the melanization pathway, in male accessory glands and testes and in queen bursae copulatrix and spermathecae of Acromyrmex echinatior and Atta colombica leaf-cutting ants. As expected, prophenoloxidase expression was low in reproductive organs that sustain prolonged contact with sperm, whereas antimicrobial peptides showed average to high expression, indicating that leaf-cutting ants invest in specific rather than generalist immune defences for pathogen protection in organs that store sperm.


Assuntos
Peptídeos Catiônicos Antimicrobianos/genética , Formigas/fisiologia , Defensinas/genética , Expressão Gênica , Proteínas de Insetos/genética , Animais , Peptídeos Catiônicos Antimicrobianos/metabolismo , Formigas/genética , Defensinas/metabolismo , Feminino , Perfilação da Expressão Gênica , Proteínas de Insetos/metabolismo , Reprodução
19.
Front Microbiol ; 8: 1942, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29067008

RESUMO

The social Hymenoptera have distinct larval and adult stages separated by metamorphosis, which implies striking remodeling of external and internal body structures during the pupal stage. This imposes challenges to gut symbionts as existing cultures are lost and may or may not need to be replaced. To elucidate the extent to which metamorphosis interrupts associations between bacteria and hosts, we analyzed changes in gut microbiota during development and traced the transmission routes of dominant symbionts from the egg to adult stage in the leaf-cutting ants Acromyrmex echinatior and Atta cephalotes, which are both important functional herbivores in the New World tropics. Bacterial density remained similar across the developmental stages of Acromyrmex, but Atta brood had very low bacterial prevalences suggesting that bacterial gut symbionts are not actively maintained. We found that Wolbachia was the absolute dominant bacterial species across developmental stages in Acromyrmex and we confirmed that Atta lacks Wolbachia also in the immature stages, and had mostly Mollicutes bacteria in the adult worker guts. Wolbachia in Acromyrmex appeared to be transovarially transmitted similar to transmission in solitary insects. In contrast, Mollicutes were socially transmitted from old workers to newly emerged callows. We found that larval and pupal guts of both ant species contained Pseudomonas and Enterobacter bacteria that are also found in fungus gardens, but hardly or not in adult workers, suggesting they are beneficial only for larval growth and development. Our results reveal that transmission pathways for bacterial symbionts may be very different both between developmental stages and between sister genera and that identifying the mechanisms of bacterial acquisition and loss will be important to clarify their putative mutualistic functions.

20.
Front Physiol ; 8: 95, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28293195

RESUMO

Tardigrades are microscopic aquatic animals renowned for their tolerance toward extreme environmental conditions. The current study is the first to investigate their tolerance toward heavy metals and we present a novel tardigrade toxicant tolerance assay based on activity assessments as a measure of survival. Specifically, we compare tolerance toward copper in four species representing different evolutionary lineages, habitats and adaptation strategies, i.e., a marine heterotardigrade, Echiniscoides sigismundi, a limno-terrestrial heterotardigrade, Echiniscus testudo, a limno-terrestrial eutardigrade, Ramazzottius oberhaeuseri, and a marine eutardigrade, Halobiotus crispae. The latter was sampled at a time of year, when the population is predominantly represented by aberrant P1 cysts, while the other species were in normal active states prior to exposure. Based on volume measurements and a general relation between body mass and copper tolerance, expected tardigrade EC50 values were estimated at 0.5-2 µg l-1. Following 24 h of exposure, tolerance was high with no apparent link to lineage or habitat. EC50s (95% CI), 24 h after exposure, were estimated at 178 (168-186) and 310 (295-328) µg l-1, respectively, for E. sigismundi and R. oberhaeuseri, whereas E. testudo and H. crispae were less affected. Highest tolerance was observed in H. crispae with a mean ± s.e.m. activity of 77 ± 2% (n = 3) 24 h after removal from ~3 mg l-1 copper, suggesting that tardigrade cysts have increased tolerance toward toxicants. In order to identify putative tolerance related genes, an E. sigismundi transcriptome was searched for key enzymes involved in osmoregulation, antioxidant defense and copper metabolism. We found high expression of Na/K ATPase and carbonic anhydrase, known targets for copper. Our transcriptome, furthermore, revealed high expression of antioxidant enzymes, copper transporters, ATOX1, and a Cu-ATPase. In summary, our results indicate that tardigrades express well-known key osmoregulatory enzymes, supporting the hypothesis that copper inhibits sodium turnover as demonstrated for other aquatic organisms. Tardigrades, nevertheless, have high tolerance toward the toxicant, which is likely linked to high expression of antioxidant enzymes and an ability to enter dormant states. Tardigrades, furthermore, seem to have a well-developed battery of cuproproteins involved in copper homeostasis, providing basis for active copper sequestering and excretion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...