Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Sci (Basel) ; 9(19)2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34484810

RESUMO

Here we demonstrate that human neural stem cells (NSCs) proliferate while in space and they express specific NSC markers after being in space. NSCs displayed both higher oxygen consumption and glycolysis than ground controls. These cells also kept their ability to become young neurons. Electrophysiological recordings of space NSC-derived neurons showed immature cell membrane properties characterized by small capacitance and very high input resistance. Current injections elicited only an incipient action potential. No spontaneous synaptic events could be detected, suggesting their immature status even though most recorded cells displayed complex morphology and numerous cell processes. Ascertaining the origin of the NSCs' increased energy requirement is of the essence in order to design effective measures to minimize health risks associated with long-duration human spaceflight missions.

2.
Toxicol Appl Pharmacol ; 263(3): 303-14, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22819785

RESUMO

4-Hydroxy-2-nonenal (4HNE) and acrolein (ACR) are highly reactive neurotoxic products of lipid peroxidation that are implicated in the pathogenesis and progression of Alzheimer's and Parkinson's diseases. Conjugation with glutathione (GSH) initiates the 4HNE and ACR detoxification pathway, which generates the mercapturates of 4HNE and ACR that can be excreted. Prior work has shown that the efficiency of the GSH-dependent renal detoxification of haloalkene derived mercapturates is significantly decreased upon their deacetylation because of rapid transformation of the deacetylated products into toxic compounds mediated by ß-lyase. The enzymes of the GSH-conjugation pathway and ß-lyases are expressed in the brain, and we hypothesized that a similar toxicity mechanism may be initiated in the brain by the deacetylation of 4HNE- and ACR-mercapturate. The present study was performed to identify an enzyme(s) involved in 4HNE- and ACR-mercapturate deacetylation, characterize the brain expression of this enzyme and determine whether its inhibition decreases 4HNE and 4HNE-mercapturate neurotoxicity. We demonstrated that of two candidate deacetylases, aminoacylases 1 (AA1) and 3 (AA3), only AA3 efficiently deacetylates both 4HNE- and ACR-mercapturate. AA3 was further localized to neurons and blood vessels. Using a small molecule screen we generated high-affinity AA3 inhibitors. Two of them completely protected rat brain cortex neurons expressing AA3 from the toxicity of 4HNE-mercapturate. 4HNE-cysteine (4HNE-Cys) was also neurotoxic and its toxicity was mostly prevented by a ß-lyase inhibitor, aminooxyacetate. The results suggest that the AA3 mediated deacetylation of 4HNE-mercapturate may be involved in the neurotoxicity of 4HNE.


Assuntos
Acroleína/toxicidade , Aldeídos/toxicidade , Amidoidrolases/metabolismo , Neurônios/patologia , Acetilação , Acetilcisteína/química , Acroleína/química , Acroleína/metabolismo , Aldeídos/química , Aldeídos/metabolismo , Doença de Alzheimer/fisiopatologia , Amidoidrolases/antagonistas & inibidores , Ácido Amino-Oxiacético/farmacologia , Animais , Córtex Cerebral/citologia , Córtex Cerebral/patologia , Inibidores Enzimáticos/farmacologia , Masculino , Doença de Parkinson/fisiopatologia , Ratos , Ratos Wistar
3.
Am J Hum Genet ; 84(4): 542-9, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19361615

RESUMO

The short-rib polydactyly (SRP) syndromes are a heterogeneous group of perinatal lethal skeletal disorders with polydactyly and multisystem organ abnormalities. Homozygosity by descent mapping in a consanguineous SRP family identified a genomic region that contained DYNC2H1, a cytoplasmic dynein involved in retrograde transport in the cilium. Affected individuals in the family were homozygous for an exon 12 missense mutation that predicted the amino acid substitution R587C. Compound heterozygosity for one missense and one null mutation was identified in two additional nonconsanguineous SRP families. Cultured chondrocytes from affected individuals showed morphologically abnormal, shortened cilia. In addition, the chondrocytes showed abnormal cytoskeletal microtubule architecture, implicating an altered microtubule network as part of the disease process. These findings establish SRP as a cilia disorder and demonstrate that DYNC2H1 is essential for skeletogenesis and growth.


Assuntos
Cílios/patologia , Dineínas/genética , Mutação , Síndrome de Costela Curta e Polidactilia/genética , Sequência de Bases , Células Cultivadas , Condrócitos/patologia , Códon sem Sentido , Consanguinidade , Dineínas do Citoplasma , Primers do DNA/genética , Dineínas/fisiologia , Feminino , Homozigoto , Humanos , Recém-Nascido , Masculino , Mutação de Sentido Incorreto , Linhagem , Gravidez , Radiografia , Síndrome de Costela Curta e Polidactilia/diagnóstico por imagem , Síndrome de Costela Curta e Polidactilia/embriologia
4.
J Cell Sci ; 121(Pt 3): 272-81, 2008 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-18198189

RESUMO

Activating mutations in fibroblast growth factor receptor 3 (FGFR3) cause several human skeletal dysplasias as a result of attenuation of cartilage growth. It is believed that FGFR3 inhibits chondrocyte proliferation via activation of signal transducers and activators of transcription (STAT) proteins, although the exact mechanism of both STAT activation and STAT-mediated inhibition of chondrocyte growth is unclear. We show that FGFR3 interacts with STAT1 in cells and is capable of activating phosphorylation of STAT1 in a kinase assay, thus potentially serving as a STAT1 kinase in chondrocytes. However, as demonstrated by western blotting with phosphorylation-specific antibodies, imaging of STAT nuclear translocation, STAT transcription factor assays and STAT luciferase reporter assays, FGF does not activate STAT1 or STAT3 in RCS chondrocytes, which nevertheless respond to a FGF stimulus with potent growth arrest. Moreover, addition of active STAT1 and STAT3 to the FGF signal, by means of cytokine treatment, SRC-mediated STAT activation or expression of constitutively active STAT mutants does not sensitize RCS chondrocytes to FGF-mediated growth arrest. Since FGF-mediated growth arrest is rescued by siRNA-mediated downregulation of the MAP kinase ERK1/2 but not STAT1 or STAT3, our data support a model whereby the ERK arm but not STAT arm of FGF signaling in chondrocytes accounts for the growth arrest phenotype.


Assuntos
Condrócitos/citologia , Condrócitos/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT3/metabolismo , Sequência de Bases , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Condrócitos/efeitos dos fármacos , Fator 2 de Crescimento de Fibroblastos/metabolismo , Fator 2 de Crescimento de Fibroblastos/farmacologia , Fatores de Crescimento de Fibroblastos/farmacologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Interferon gama/farmacologia , Interleucina-6/farmacologia , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Mutagênese Sítio-Dirigida , Fosforilação , Interferência de RNA , RNA Interferente Pequeno/genética , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/genética , Transdução de Sinais , Transfecção
5.
J Biol Chem ; 279(42): 43374-7, 2004 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-15339919

RESUMO

AlphaB-crystallin is a developmentally regulated small heat shock protein known for its binding to a variety of denatured polypeptides and suppression of protein aggregation in vitro. Elevated levels of alphaB-crystallin are known to be associated with a number of neurodegenerative pathologies such as Alzheimer disease and multiple sclerosis. Mutations in alphaB-crystallin gene have been linked to desmin related cardiomyopathy and cataractogenesis. The physiological function of this protein, however, is unknown. Using discontinuous sucrose density gradient fractionation of post-nuclear supernatants, prepared from rat tissues and human glioblastoma cell line U373MG, we have identified discrete membrane-bound fractions of alphaB-crystallin, which co-sediment with the Golgi matrix protein, GM130. Confocal microscopy reveals co-localization of alphaB-crystallin with BODIPY TR ceramide and the Golgi matrix protein, GM130, in the perinuclear Golgi in human glioblastoma U373MG cells. Examination of synchronized cultures indicated that alphaB-crystallin follows disassembly of the Golgi at prometaphase and its reassembly at the completion of cytokinesis, suggesting that this small heat shock protein, with its chaperone-like activity, may have an important role in the Golgi reorganization during cell division.


Assuntos
Ciclo Celular/fisiologia , Complexo de Golgi/ultraestrutura , Cadeia B de alfa-Cristalina/fisiologia , Sequência de Aminoácidos , Animais , Divisão Celular/fisiologia , Linhagem Celular , Sequência Conservada , Complexo de Golgi/fisiologia , Microscopia Confocal , Fragmentos de Peptídeos , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...