Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chembiochem ; 19(4): 317-325, 2018 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-29119717

RESUMO

Synthetic polyesters are today the second-largest class of ingredients in household products and are entering wastewater treatment plants (WWTPs) after product utilization. One approach to improve polymer biodegradation in wastewater would be to complement current processes with polyester-hydrolyzing enzymes and their microbial producers. In this study, the hydrolysis of poly(oxyethylene terephthalate) polymer by hydrolases from wastewater microorganisms was investigated in vitro and under realistic WWTP conditions. An esterase and a cutinase from Pseudomonas pseudoalcaligenes and a lipase from Pseudomonas pelagia were heterologously expressed in Escherichia coli BL21-Gold(DE3) and were purified by a C-terminal His6 tag. The hydrolases were proven to hydrolyze the polymer effectively, which is a prerequisite for further biodegradation. The hydrolases maintained high activity up to 50 % upon lowering the temperature from 28 to 15 °C to mimic WWTP conditions. The hydrolases were also not inhibited by the wastewater matrix. Polyester-hydrolyzing enzymes active under WWTP conditions and their microbial producers thus have the potential to improve biological treatment of wastewater rich in synthetic polymers.


Assuntos
Esterases/metabolismo , Lipase/metabolismo , Poliésteres/síntese química , Poliésteres/metabolismo , Águas Residuárias/química , Biodegradação Ambiental , Esterases/química , Lipase/química , Estrutura Molecular , Poliésteres/química , Pseudomonas/enzimologia , Pseudomonas/isolamento & purificação , Pseudomonas pseudoalcaligenes/enzimologia , Pseudomonas pseudoalcaligenes/isolamento & purificação , Temperatura
2.
Environ Sci Technol ; 51(8): 4596-4605, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28345898

RESUMO

Water-soluble polyesters are used in a range of applications today and enter wastewater treatment plants after product utilization. However, little is known about extracellular enzymes and aquatic microorganisms involved in polyester biodegradation and mineralization. In this study, structurally different ionic phthalic acid based polyesters (the number-average molecular weights (Mn) 1770 to 10 000 g/mol and semi crystalline with crystallinity below 1%) were synthesized in various combinations. Typical wastewater microorganisms like Pseudomonas sp. were chosen for in-silico screening toward polyester hydrolyzing enzymes. Based on the in-silico search, a cutinase from Pseudomonas pseudoalcaligenes (PpCutA) and a putative lipase from Pseudomonas pelagia (PpelaLip) were identified. The enzymes PpCutA and PpelaLip were demonstrated to hydrolyze all structurally different polyesters. Activities on all the polyesters were also confirmed with the strains P. pseudoalcaligenes and P. pelagia. Parameters identified to enhance hydrolysis included increased water solubility and polyester hydrophilicity as well as shorter diol chain lengths. For example, polyesters containing 1,2-ethanediol were hydrolyzed faster than polyesters containing 1,8-octanediol. Interestingly, the same trend was observed in biodegradation experiments. This information is important to gain a better mechanistic understanding of biodegradation processes of polyesters in WWTPs where the extracellular enzymatic hydrolysis seems to be the limiting step.


Assuntos
Poliésteres/metabolismo , Águas Residuárias , Hidrólise , Ácidos Ftálicos/metabolismo , Pseudomonas/metabolismo
3.
J Biotechnol ; 257: 70-77, 2017 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-28237250

RESUMO

Extracellular enzymes are assumed to be responsible for the initial and rate limiting step in biodegradation of polymers. Mainly enzymes with aliphatic esters as their natural substrates (e.g. lipase, cutinases) have until now been evaluated for polyester hydrolysis studies. However, the potential of enzymes with aromatic esters as their natural substrates (e.g. arylesterases) have been neglected although many types of polyester today contain aromatic moieties. Consequently, in order to elucidate biodegradation of phthalic polyesters in aquatic systems, a novel arylesterase (PpEst) was investigated related to hydrolysis of ionic phthalic polyesters. The hydrolysis of various ionic phthalic polyesters by PpEst was mechanistically studied. The polyester building blocks (terephthalic acid (TA), 5-sulfoisophthalic acid (NaSIP) and alkyl or ether diols) were systematically varied to investigate the impact on hydrolysis. PpEst effectively hydrolyzed all 14 synthetized ionic phthalic polyesters as indicated by released TA. However, no NaSIP was detected indicating that PpEst has a limited capacity to cleave bonds in close vicinity to the ionic monomer NaSIP. The systematic study indicated that increasing water solubility and hydrophilicity significantly enhanced hydrolysis. A higher release of TA was seen with increasing NaSIP ratio while up to 20 times more TA was released when alkyl diols were replaced by ether diol analogues. In contrast, cyclic and branched diols had a negative effect on hydrolysis when compared to linear diols. PpEst also revealed a linear release of TA over seven days for ether containing polyesters, indicating a very stable enzyme.


Assuntos
Hidrolases de Éster Carboxílico/metabolismo , Ácidos Ftálicos/metabolismo , Poliésteres/metabolismo , Polímeros/metabolismo , Pseudomonas pseudoalcaligenes/enzimologia , Plásticos Biodegradáveis , Biodegradação Ambiental , Hidrolases de Éster Carboxílico/genética , Clonagem Molecular , Regulação Bacteriana da Expressão Gênica , Hidrólise , Íons , Poliésteres/química , Polímeros/química , Pseudomonas pseudoalcaligenes/genética
4.
Polymers (Basel) ; 9(9)2017 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-30965704

RESUMO

A series of copolyesters based on furanic acid and sulfonated isophthalic acid with various polyols were synthetized and their susceptibility to enzymatic hydrolysis by cutinase 1 from Thermobifida cellulosilytica (Thc_Cut1) investigated. All copolyesters consisted of 30 mol % 5-sulfoisophthalate units (NaSIP) and 70 mol % 2,5-furandicarboxylic acid (FDCA), while the polyol component was varied, including 1,2-ethanediol, 1,4-butanediol, 1,8-octanediol, diethylene glycol, triethylene glycol, or tetraethylene glycol. The composition of the copolyesters was confirmed by ¹H-NMR and the number average molecular weight (Mn) was determined by GPC to range from 2630 to 8030 g/mol. A DSC analysis revealed glass-transition temperatures (Tg) from 84 to 6 °C, which were decreasing with increasing diol chain length. The crystallinity was below 1% for all polyesters. The hydrolytic stability increased with the chain length of the alkyl diol unit, while it was generally higher for the ether diol units. Thc_Cut1 was able to hydrolyze all of the copolyesters containing alkyl diols ranging from two to eight carbon chain lengths, while the highest activities were detected for the shorter chain lengths with an amount of 13.6 ± 0.7 mM FDCA released after 72 h of incubation at 50 °C. Faster hydrolysis was observed when replacing an alkyl diol by ether diols, as indicated, e.g., by a fivefold higher release of FDCA for triethylene glycol when compared to 1,8-octanediol. A positive influence of introducing ionic phthalic acid was observed while the enzyme preferentially cleaved ester bonds associated to the non-charged building blocks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...