Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Metab Eng ; 47: 475-487, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29709649

RESUMO

The amino acid lysine is among the world's most important biotechnological products, and enabling its manufacture from the most attractive new materials is an ever-present challenge. In this study, we describe a cell factory of Corynebacterium glutamicum, which produces lysine from mannitol. A preliminary mutant C. glutamicum SEA-1 obtained by the deletion of the mannitol repressor MtlR in the glucose-based, lysine-producing strain C. glutamicum LYS-12 produced only small amounts of lysine. This limitation was due to a significant accumulation of fructose and a limited NADPH supply, which caused a low flux of only 6% into the oxidative pentose phosphate (PP) pathway. Subsequent expression of fructokinase slightly increased production but failed to substantially redirect the flux from the Emden-Meyerhof-Parnas (EMP) pathway to the PP pathway. This suggested the design of C. glutamicum SEA-3, which overexpressed the NADP-dependent glyceraldehyde 3-phosphate dehydrogenase GapN from Streptococcus mutans and coupled the EMP pathway flux to NADPH formation. When grown on mannitol, the SEA-3 strain had a lysine yield of 0.24 mol mol-1 and a specific productivity of 1.3 mmol g-1 h-1, approximately 60% and 75% higher, respectively, than those of the basic producer SEA-1. A computational pathway analysis revealed that this design would potentially enable a lysine yield of 0.9 mol mol-1, providing room for further development. Our findings open new avenues for lysine production from marine macroalgae, which is farmed globally as an attractive third-generation renewable resource. Mannitol is a major constituent of these algae (up to 30% and higher) and can be easily extracted from their biomass with hot water.


Assuntos
Corynebacterium glutamicum , Lisina , Manitol/metabolismo , Engenharia Metabólica , Microrganismos Geneticamente Modificados , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Lisina/biossíntese , Lisina/genética , Microrganismos Geneticamente Modificados/genética , Microrganismos Geneticamente Modificados/metabolismo , Streptococcus mutans/genética
2.
Biotechnol Lett ; 35(8): 1223-30, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23592306

RESUMO

Dissolved oxygen plays an essential role in aerobic cultivation especially due to its low solubility. Under unfavorable conditions of mixing and vessel geometry it can become limiting. This, however, is difficult to predict and thus the right choice for an optimal experimental set-up is challenging. To overcome this, we developed a method which allows a robust prediction of the dissolved oxygen concentration during aerobic growth. This integrates newly established mathematical correlations for the determination of the volumetric gas-liquid mass transfer coefficient (kLa) in disposable shake-flasks from the filling volume, the vessel size and the agitation speed. Tested for the industrial production organism Corynebacterium glutamicum, this enabled a reliable design of culture conditions and allowed to predict the maximum possible cell concentration without oxygen limitation.


Assuntos
Corynebacterium glutamicum/crescimento & desenvolvimento , Corynebacterium glutamicum/metabolismo , Meios de Cultura/química , Oxigênio/metabolismo , Aerobiose , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...