Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 628-629: 840-847, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29455134

RESUMO

During COP 21 in Paris 2015, several states and organizations agreed on the "4/1000" initiative for food security and climate. This initiative aims to increase world's soil organic carbon (SOC) stocks by 4‰ annually. The influence of soil development status on SOC dynamics is very important but usually not considered in studies. We analyse SOC accumulation under forest, grassland and cropping systems along a soil age gradient (10-17,000years) to show the influence of soil development status on SOC increase. SOC stocks (0-40cm) and accumulation rates along a chronosequence in alluvial soils of the Danube River in the Marchfeld (eastern Austria) were analysed. The analysed Fluvisols and Chernozems have been used as forest, grassland and cropland for decades or hundreds of years. The results showed that there is a fast build-up of OC stocks (0-40cm) in young soils with accumulation of ~1.3tha-1a-1 OC in the first 100years and ~0.5tha-1a-1 OC between 100 and 350years almost independent of land use. Chernozems with a sediment deposition age older than 5.000years have an accumulation rate<0.01tOCha-1a-1 (0-40cm). Radiocarbon dating showed that the topsoil (0-10cm) consists mainly of ">modern" and "modern" carbon indicating a fast carbon cycling. Carbon in subsoil is less exposed to decomposition and OC can be stored at long-time scales in the subsoil (14C age of 3670±35 BP). In view of the '4/1000' initiative, soils with constant carbon input (forest & grassland) fulfil the intended 4‰ growth rate of SOC stocks only in the first 60years of soil development. We proclaim that under the present climate in Central Europe, the increase of SOC stocks in soil is strongly affected by the state of soil development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA