Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chempluschem ; 86(8): 1040-1041, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34128360

RESUMO

Invited for this month's cover are collaborators from University of Pavia, École Polytechnique Fédérale de Lausanne, University of Messina and Istituto Italiano di Tecnologia. The cover picture shows the crystal structure of a Ruddlesden-Popper quasi-2D perovskite with chemical formula (PEA)2 MA39 Pb40 I121 (with PEA: phenylethylammonium and MA: methylammonium). The subscript 40 indicates the number of PbI6 octahedra separated by a double layer of PEA cations. Such quasi-2D perovskites exhibit efficient photovoltaic performances and higher stability with respect to the pure 3D counterpart (MAPbI3 ). This article is part of the Special Collection on "Perovskite Materials and Devices". Read the full text of the article at 10.1002/cplu.202000777.

2.
Chempluschem ; 86(8): 1044-1048, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33665981

RESUMO

Low-dimensional perovskites (LDP) are nowadays recognized as promising materials for the realization of highly performing photovoltaic cells. However, issues related to film morphology, composition, crystal quality and material homogeneity limit the device performances and reproducibility. In this work, we implement a robust method for the deposition of a LDP mixing methylammonium (MA) and phenylethylammonium (PEA) cations to create the mixed system (PEA)2 MA39 Pb40 I121 by using a two-step thermal annealing treatment (at 60 and 100 °C). Our approach results in LDP films with high crystal quality and enhanced carrier lifetime, which double the power conversion efficiency of reference devices, reaching up to 15 %.

3.
ACS Omega ; 2(5): 2126-2133, 2017 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31457566

RESUMO

Mixed halide (I/Br) complex organic/inorganic hybrid perovskite materials have attracted much attention recently because of their excellent photovoltaic properties. Although it has been proposed that their stability is linked to the chemical inhomogeneity of I/Br, no direct proof has been offered to date. Here, we report a new method, secondary electron hyperspectral imaging (SEHI), which allows direct imaging of the local variation in Br concentration in mixed halide (I/Br) organic/inorganic hybrid perovskites on a nanometric scale. We confirm the presence of a nonuniform Br distribution with variation in concentration within the grain interiors and boundaries and demonstrate how SEHI in conjunction with low-voltage scanning electron microscopy can enhance the understanding of the fundamental physics and materials science of organic/inorganic hybrid photovoltaics, illustrating its potential for research and development in "real-world" applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...