Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 53(13): 7419-7431, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31132243

RESUMO

Contamination of soils and sediments with the highly persistent hexachlorocyclohexanes (HCHs) continues to be a threat for humans and the environment. Despite the existence of bacteria capable of biodegradation and cometabolic transformation of HCH isomers, such processes occur over time scales of decades and are thus challenging to assess. Here, we explored the use of compound-specific isotope analysis (CSIA) to track the aerobic biodegradation and biotransformation pathways of the most prominent isomers, namely, (-)-α-, (+)-α-, ß-, γ-, and δ-HCH, through changes of their C and H isotope composition in assays of LinA2 and LinB enzymes. Dehydrochlorination of (+)-α-, γ-, and δ-HCH catalyzed by LinA2 was subject to substantial C and H isotope fraction with apparent 13C- and 2H-kinetic isotope effects (AKIEs) of up to 1.029 ± 0.001 and 6.7 ± 2.9, respectively, which are indicative of bimolecular eliminations. Hydrolytic dechlorination of δ-HCH by LinB exhibited even larger C but substantially smaller H isotope fractionation with 13C- and 2H-AKIEs of 1.073 ± 0.006 and 1.41 ± 0.04, respectively, which are typical for nucleophilic substitutions. The systematic evaluation of isomer-specific phenomena showed that, in addition to contaminant uptake limitations, diffusion-limited turnover ((-)-α-HCH), substrate dissolution (ß-HCH), and potentially competing reactions catalyzed by constitutively expressed enzymes might bias the assessment of HCH biodegradation by CSIA at contaminated sites.


Assuntos
Halogenação , Hexaclorocicloexano , Biodegradação Ambiental , Biotransformação , Isomerismo
2.
Environ Sci Technol ; 53(5): 2353-2363, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30674184

RESUMO

Compound-specific isotope analysis (CSIA) can provide insights into the natural attenuation processes of hexachlorocyclohexanes (HCHs), an important class of persistent organic pollutants. However, the interpretation of HCH stable isotope fractionation is conceptually challenging. HCHs exist as different conformers that can be converted into each other, and the enzymes responsible for their transformation discriminate among those HCH conformers. Here, we investigated the enzyme specificity of apparent 13C- and 2H-kinetic isotope effects (AKIEs) associated with the dehydrochlorination of γ-HCH (lindane) by two variants of the lindane dehydrochlorinases LinA1 and LinA2. While LinA1 and LinA2 attack γ-HCH at different trans-1,2-diaxial H-C-C-Cl moieties, the observed C and H isotope fractionation was large, typical for bimolecular eliminations, and was not affected by conformational mobility. 13C-AKIEs for transformation by LinA1 and LinA2 were the same (1.024 ± 0.001 and 1.025 ± 0.001, respectively), whereas 2H-AKIEs showed minor differences (2.4 ± 0.1 and 2.6 ± 0.1). Variations of isotope effects between LinA1 and LinA2 are small and in the range reported for different degrees of C-H bond cleavage in transition states of dehydrochlorination reactions. The large C and H isotope fractionation reported here for experiments with pure enzymes contrasts with previous observations from whole cell experiments and suggests that specific uptake processes by HCH-degrading microorganisms might modulate the observable HCH isotope fractionation at contaminated sites.


Assuntos
Hexaclorocicloexano , Liases , Isótopos , Cinética
3.
Environ Sci Technol ; 49(5): 2757-66, 2015 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-25664567

RESUMO

Sunlight inactivation is an important mode of disinfection for viruses in surface waters. In constructed wetlands, for example, open-water cells can be used to promote sunlight disinfection and remove pathogenic viruses from wastewater. To aid in the design of these systems, we developed predictive models of virus attenuation that account for endogenous and exogenous sunlight-mediated inactivation mechanisms. Inactivation rate models were developed for two viruses, MS2 and poliovirus type 3; laboratory- and field-scale experiments were conducted to evaluate the models' ability to estimate inactivation rates in a pilot-scale, open-water, unit-process wetland cell. Endogenous inactivation rates were modeled using either photoaction spectra or total, incident UVB irradiance. Exogenous inactivation rates were modeled on the basis of virus susceptibilities to singlet oxygen. Results from both laboratory- and field-scale experiments showed good agreement between measured and modeled inactivation rates. The modeling approach presented here can be applied to any sunlit surface water and utilizes easily measured inputs such as depth, solar irradiance, water matrix absorbance, singlet oxygen concentration, and the virus-specific apparent second-order rate constant with singlet oxygen (k2). Interestingly, the MS2 k2 in the open-water wetland was found to be significantly larger than k2 observed in other waters in previous studies. Examples of how the model can be used to design and optimize natural treatment systems for virus inactivation are provided.


Assuntos
Modelos Biológicos , Luz Solar , Inativação de Vírus/efeitos da radiação , Vírus/efeitos da radiação , Purificação da Água/métodos , Raios Ultravioleta , Águas Residuárias/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...