Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Vet Res ; 14(1): 183, 2018 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-29895307

RESUMO

BACKGROUND: Lameness due to paw injuries is common in the clinical practice. Although many studies investigated gait adaptations to diseases or injuries, mainly of the hip and knee, our understanding of the biomechanical coping mechanisms that lame dogs utilize is limited. Therefore, this study evaluated the kinematic changes associated with an induced, load-bearing pelvic limb lameness in healthy dogs trotting on a treadmill. Kinematic analysis included spatio-temporal comparisons of limb, joint and segment angles of all limbs. Key parameters compared between sound and lame conditions were: angles at touch-down and lift-off, minimum and maximum joint angles and range of motion. RESULTS: Significant differences were identified in each limb during both stance and swing phases. The most pronounced differences concerned the affected pelvic limb, followed by the contralateral pelvic limb, the contralateral thoracic limb and, to the least degree, the ipsilateral thoracic limb. The affected limb was retracted more, while the contralateral limb was protracted more, consistent with this limb bearing more body weight in lame dogs. CONCLUSIONS: Kinematic adaptations involved almost all segment and joint angles in the pelvic limbs, while they exclusively concerned distal parts of the thoracic limbs. Comparisons with tripedal locomotion reveal several striking similarities, implying that dogs use similar principles to cope with a partial or a total loss in limb function. Because kinematic alterations occurred in all limbs and not just the affected one, all limbs should be included in routine follow-ups and be part of the diagnostic and therapeutic care of canine patients.


Assuntos
Doenças do Cão/etiologia , Membro Posterior/patologia , Coxeadura Animal/fisiopatologia , Animais , Fenômenos Biomecânicos , Cães , Teste de Esforço/veterinária , Feminino , Membro Anterior , Locomoção , Masculino , Suporte de Carga
2.
Biol Open ; 4(12): 1635-42, 2015 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-26538637

RESUMO

The selective forces that played a role in the evolution of the musculoskeletal system of the genus Homo have long been debated and remain poorly understood. In this investigation, we introduce a new approach for testing alternative hypotheses. Our analysis is based on the premise that natural selection can be expected to have resulted in muscles that are large enough to achieve necessary levels of maximum performance in essential behaviors, but not larger. We used surface electromyography in male subjects to identify maximum activation levels in 13 muscles of the back and leg during eight behaviors that have been suggested to have been important to foraging, hunting and fighting performance in early humans. We asked two questions: (1) what behaviors produce maximum activation in each of the investigated muscles and (2) are there specific behaviors that elicit maximum recruitment from all or most of the muscles? We found that in eight of the 13 muscles, the highest activity occurred during maximal effort vertical jumping (i.e. whole-body acceleration). Punching produced the highest median activity in the other five muscles. Together, jumping and punching accounted for 73% of the incidences of maximum activity among all of the muscles and from all of the subjects. Thus, the size of the muscles of the back and leg appear to be more related to the demands of explosive behaviors rather than those of high speed sprinting or sustained endurance running. These results are consistent with the hypothesis that selection on aggressive behavior played an important role in the evolution of the genus Homo.

3.
J Exp Zool A Ecol Genet Physiol ; 323(8): 506-15, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26200094

RESUMO

Alterations in muscle recruitment are key to the functional plasticity of the mammalian locomotor system. One particularly challenging situation quadrupeds may face is when the functionality of a limb is reduced or lost. To better understand how mammals manage in such situations and which muscular adaptations they exhibit when locomoting on three legs, we recorded the activity patterns of two limb and one back extensor muscle in nine dogs using surface electromyography. We compared the timing and the level of recruitment before and after the loss of a hindlimb was simulated. Both the intensity and the timing of the activity changed significantly in the m. vastus lateralis of the remaining hindlimb, consistent with this limb bearing a greater proportion of the body weight as well as with previously reported kinematic changes. In accordance with the greater body weight supported by the forelimbs, the m. triceps brachii showed first and foremost an increased level of excitation. The very asymmetrical changes in the timing and the level of activity in the m. longissimus dorsi reflects the highly asymmetrical functional requirements imposed on the trunk and the pelvis when one hindlimb is no longer involved in the production of locomotor work while the other hindlimb partially compensates the loss. Integration of our electromyographical findings with kinetic and kinematic results illustrates that dogs exhibited a well-coordinated response to the functional requirements of tripedalism and underlines the importance of moment-to-moment modulation in muscular recruitment for the functional plasticity of the mammalian locomotor system.


Assuntos
Adaptação Fisiológica , Cães/fisiologia , Locomoção/fisiologia , Músculo Esquelético/fisiologia , Animais , Músculos do Dorso/fisiologia , Fenômenos Biomecânicos , Eletromiografia , Feminino , Membro Anterior/fisiologia , Membro Posterior/fisiologia , Cinética , Masculino
4.
J Exp Zool A Ecol Genet Physiol ; 321(5): 254-64, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24532473

RESUMO

Weight support patterns vary widely among mammals. Differences in how much of the body weight is supported by the fore- versus the hind-limbs are well documented among and within species. Intraindividual variation due to ontogenetic processes has been studied in several hindlimb-dominated species and consistently showed a caudal shift in the limbs' support roles. We hypothesized that forelimb-dominated species exhibit a cranial shift in their support pattern and tested this hypothesis by examining the vertical ground reaction forces in growing dogs. Six male Beagle siblings were studied from 9 to 51 postnatal weeks (PW) of age while they trotted on an instrumented treadmill. Ontogenetic shifting in fore-to-hind support was evaluated using vertical force ratios (i.e., peak and impulse) as well as the stance time ratio of the fore- and the hind-limbs. Because morphological and kinematic characteristics influence weight support patterns, changes in body shape (i.e., trunk shape), and average limb position were determined. As in adult dogs, the forelimbs carried a greater proportion of the body weight than the hindlimbs at all ages. When the dogs were younger, peak vertical force occurred earlier during stance in the hindlimbs but not the forelimbs. Both the increasing ratio of the vertical force and the increasing ratio of the stance times indicate an increasing weight support by the forelimbs (i.e., 59% at PW9 vs. 63% at PW51). The observed ontogenetic changes in trunk shape and average limb angle were consistent with this cranial shift in weight support.


Assuntos
Cães/crescimento & desenvolvimento , Membro Anterior/anatomia & histologia , Membro Anterior/crescimento & desenvolvimento , Membro Posterior/anatomia & histologia , Membro Posterior/crescimento & desenvolvimento , Locomoção , Animais , Fenômenos Biomecânicos , Peso Corporal , Cães/anatomia & histologia , Masculino
5.
Zoology (Jena) ; 117(1): 1-6, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24468089

RESUMO

Craniate animals--vertebrates and their jawless sister taxa--have evolved a body axis with powerful muscles, a distributed nervous system to control those muscles, and an endoskeleton that starts at the head and ends at the caudal fin. The body axis undulates, bends, twists, or holds firm, depending on the behavior. In this introduction to the special issue on axial systems and their actuation, we provide an overview of the latest research on how the body axis functions, develops, and evolves. Based on this research, we hypothesize that the body axis of craniates has three primary, post-cranial modules: precaudal, caudal, and tail. The term "module" means a portion of the body axis that functions, develops, and evolves in relative independence from other modules; "relative independence" means that structures and processes within a module are more tightly correlated in function, development, and behavior than the same processes are among modules.


Assuntos
Padronização Corporal , Cordados/anatomia & histologia , Animais , Comportamento Animal , Evolução Biológica , Vertebrados/anatomia & histologia
6.
PLoS One ; 8(11): e80987, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24236207

RESUMO

Muscle tissue has a great intrinsic adaptability to changing functional demands. Triggering more gradual responses such as tissue growth, the immediate responses to altered loading conditions involve changes in the activity. Because the reduction in a limb's function is associated with marked deviations in the gait pattern, understanding the muscular responses in laming animals will provide further insight into their compensatory mechanisms as well as help to improve treatment options to prevent musculoskeletal sequelae in chronic patients. Therefore, this study evaluated the changes in muscle activity in adaptation to a moderate, short-term, weight-bearing hindlimb lameness in two leg and one back muscle using surface electromyography (SEMG). In eight sound adult dogs that trotted on an instrumented treadmill, bilateral, bipolar recordings of the m. triceps brachii, the m. vastus lateralis and the m. longissimus dorsi were obtained before and after lameness was induced. Consistent with the unchanged vertical forces as well as temporal parameters, neither the timing nor the level of activity changed significantly in the m. triceps brachii. In the ipsilateral m. vastus lateralis, peak activity and integrated SEMG area were decreased, while they were significantly increased in the contralateral hindlimb. In both sides, the duration of the muscle activity was significantly longer due to a delayed offset. These observations are in accordance with previously described kinetic and kinematic changes as well as changes in muscle mass. Adaptations in the activity of the m. longissimus dorsi concerned primarily the unilateral activity and are discussed regarding known alterations in trunk and limb motions.


Assuntos
Adaptação Fisiológica , Membro Posterior/fisiopatologia , Coxeadura Animal/fisiopatologia , Músculo Esquelético/fisiologia , Animais , Eletromiografia , Feminino , Masculino
7.
BMC Vet Res ; 9: 203, 2013 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-24112520

RESUMO

BACKGROUND: Mammalian juveniles undergo dramatic changes in body conformation during development. As one of the most common companion animals, the time line and trajectory of a dog's development and its body's re-proportioning is of particular scientific interest. Several ontogenetic studies have investigated the skeletal development in dogs, but none has paid heed to the scapula as a critical part of the mammalian forelimb. Its functional integration into the forelimb changed the correspondence between fore- and hindlimb segments and previous ontogenetic studies observed more similar growth patterns for functionally than serially homologous elements. In this study, the ontogenetic development of six Beagle siblings was monitored between 9 and 51 weeks of age to investigate their skeletal allometry and compare this with data from other lines, breeds and species. RESULTS: Body mass increased exponentially with time; log linear increase was observed up to the age of 15 weeks. Compared with body mass, withers and pelvic height as well as the lengths of the trunk, scapula, brachium and antebrachium, femur and crus exhibited positive allometry. Trunk circumference and pes showed negative allometry in all, pelvis and manus in most dogs. Thus, the typical mammalian intralimb re-proportioning with the proximal limb elements exhibiting positive allometry and the very distal ones showing negative allometry was observed. Relative lengths of the antebrachium, femur and crus increased, while those of the distal elements decreased. CONCLUSIONS: Beagles are fully-grown regarding body height but not body mass at about one year of age. Particular attention should be paid to feeding and physical exertion during the first 15 weeks when they grow more intensively. Compared with its siblings, a puppy's size at 9 weeks is a good indicator for its final size. Among siblings, growth duration may vary substantially and appears not to be related to the adult size. Within breeds, a longer time to physically mature is hypothesized for larger-bodied breeding lines. Similar to other mammals, the Beagle displayed nearly optimal intralimb proportions throughout development. Neither the forelimbs nor the hindlimbs conformed with the previously observed proximo-distal order of the limb segment's growth gradients. Potential factors responsible for variations in the ontogenetic allometry of mammals need further evaluation.


Assuntos
Cães/anatomia & histologia , Cães/crescimento & desenvolvimento , Animais , Fenômenos Biomecânicos , Cães/fisiologia , Masculino , Especificidade da Espécie
8.
Ann Anat ; 195(6): 570-80, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24028860

RESUMO

Human back muscles have been classified as local stabilizers, global stabilizers and global mobilizers. This concept is supported by the distribution of slow and fast muscle fibres in quadrupedal mammals, but has not been evaluated for humans because detailed information on the fibre type composition of their perivertebral musculature is rare. Moreover, such information is derived from spot samples, which are assumed to be representative for the respective muscle. In accordance with the proposed classification, numerous studies in animals indicate great differences in the fibre distribution within and among the muscles due to fibre type regionalization. The aims of this study were to (1) qualitatively explore the applicability of the proposed functional classification for human back muscles by studying their fibre type composition and (2) evaluate the representativeness of spot sampling techniques. For this, the fibre type distribution of the whole lumbar perivertebral musculature of two male cadavers was investigated three-dimensionally using immunohistochemistry. Despite great local variations (e.g., among fascicles), all muscles were composed of about 50% slow and 50% fast fibres. Thus, contradicting the concepts of lumbar muscle function, no functional differentiation of the muscles was observed in our study of the muscle contractile properties. The great similarity in fibre composition among the muscles equips each muscle equally well for a broad range of tasks and therefore has the potential to allow for great functional versatility of the human back musculature. Spot samples do not prove to be representative for the whole muscle. The great intraspecific variability observed previously in single-spot samples is potentially misleading.


Assuntos
Músculos do Dorso/anatomia & histologia , Músculos do Dorso/citologia , Fibras Musculares Esqueléticas/fisiologia , Idoso de 80 Anos ou mais , Anatomia Transversal/métodos , Músculos do Dorso/fisiologia , Cadáver , Contagem de Células , Interpretação Estatística de Dados , Humanos , Imuno-Histoquímica , Região Lombossacral , Masculino , Pessoa de Meia-Idade , Contração Muscular/fisiologia , Fibras Musculares de Contração Rápida/fisiologia , Fibras Musculares de Contração Lenta/fisiologia , Músculos Psoas/anatomia & histologia , Músculos Psoas/citologia , Tamanho da Amostra
9.
Evolution ; 67(4): 1209-17, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23550769

RESUMO

Differences in rhythmicity (relative variance in cycle period) among mammal, fish, and lizard feeding systems have been hypothesized to be associated with differences in their sensorimotor control systems. We tested this hypothesis by examining whether the locomotion of tachymetabolic tetrapods (birds and mammals) is more rhythmic than that of bradymetabolic tetrapods (lizards, alligators, turtles, salamanders). Species averages of intraindividual coefficients of variation in cycle period were compared while controlling for gait and substrate. Variance in locomotor cycle periods is significantly lower in tachymetabolic than in bradymetabolic animals for datasets that include treadmill locomotion, non-treadmill locomotion, or both. When phylogenetic relationships are taken into account the pooled analyses remain significant, whereas the non-treadmill and the treadmill analyses become nonsignificant. The co-occurrence of relatively high rhythmicity in both feeding and locomotor systems of tachymetabolic tetrapods suggests that the anatomical substrate of rhythmicity is in the motor control system, not in the musculoskeletal components.


Assuntos
Aves/genética , Evolução Molecular , Locomoção/genética , Mamíferos/genética , Periodicidade , Répteis/genética , Animais , Marcha , Locomoção/fisiologia , Filogenia
10.
Am J Vet Res ; 74(1): 34-9, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23270343

RESUMO

OBJECTIVE: To evaluate the load redistribution mechanisms in walking and trotting dogs with induced forelimb lameness. ANIMALS: 7 healthy adult Beagles. PROCEDURES: Dogs walked and trotted on an instrumented treadmill to determine control values for peak and mean vertical force as well as vertical impulse for all 4 limbs. A small sphere was attached to the ventral pad of the right forelimb paw to induce a reversible lameness, and recordings were repeated for both gaits. Additionally, footfall patterns were assessed to test for changes in temporal gait variables. RESULTS: During walking and trotting, peak and mean vertical force as well as vertical impulse were decreased in the ipsilateral forelimb, increased in the contralateral hind limb, and remained unchanged in the ipsilateral hind limb after lameness was induced. All 3 variables were increased in the contralateral forelimb during trotting, whereas only mean vertical force and vertical impulse were increased during walking. Stance phase duration increased in the contralateral forelimb and hind limb during walking but not during trotting. CONCLUSIONS AND CLINICAL RELEVANCE: Analysis of the results suggested that compensatory load redistribution mechanisms in dogs depend on the gait. All 4 limbs should be evaluated in basic research and clinical studies to determine the effects of lameness on the entire body. Further studies are necessary to elucidate specific mechanisms for unloading of the affected limb and to determine the long-term effects of load changes in animals with chronic lameness.


Assuntos
Doenças do Cão/fisiopatologia , Membro Anterior/fisiopatologia , Marcha , Membro Posterior/fisiopatologia , Coxeadura Animal/fisiopatologia , Locomoção , Animais , Doenças do Cão/etiologia , Cães , Teste de Esforço/veterinária , Feminino , Membro Anterior/lesões , Membro Posterior/lesões , Cinética , Coxeadura Animal/etiologia , Masculino
11.
J Morphol ; 274(3): 294-306, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23115131

RESUMO

The perivertebral musculature of lizards is critical for the stabilization and the mobilization of the trunk during locomotion. Some trunk muscles are also involved in ventilation. This dual function of trunk muscles in locomotion and ventilation leads to a biomechanical conflict in many lizards and constrains their ability to breathe while running ("axial constraint") which likely is reflected by their high anaerobic scope. Furthermore, different foraging and predator-escape strategies were shown to correlate with the metabolic profile of locomotor muscles in lizards. Because knowledge of muscle's fiber-type composition may help to reveal a muscle's functional properties, we investigated the distribution pattern of muscle fiber types in the perivertebral musculature in two small lizard species with a generalized body shape and subjected to the axial constraint (Dipsosaurus dorsalis, Acanthodactylus maculatus) and one species that circumvents the axial constraint by means of gular pumping (Varanus exanthematicus). Additionally, these species differ in their predator-escape and foraging behaviors. Using refined enzyme-histochemical protocols, muscle fiber types were differentiated in serial cross-sections through the trunk, maintaining the anatomical relationships between the skeleton and the musculature. The fiber composition in Dipsosaurus and Acanthodactylus showed a highly glycolytic profile, consistent with their intermittent locomotor style and reliance on anaerobic metabolism during activity. Because early representatives of diapsids resemble these two species in several postcranial characters, we suggest that this glycolytic profile represents the plesiomorphic condition for diapsids. In Varanus, we found a high proportion of oxidative fibers in all muscles, which is in accordance with its high aerobic scope and capability of sustained locomotion.


Assuntos
Lagartos/anatomia & histologia , Lagartos/fisiologia , Fibras Musculares Esqueléticas/citologia , Músculo Esquelético/anatomia & histologia , Animais , Evolução Biológica , Feminino , Iguanas/anatomia & histologia , Iguanas/fisiologia , Locomoção/fisiologia , Masculino , Fibras Musculares Esqueléticas/classificação , Músculo Esquelético/fisiologia , Tronco
12.
J Anat ; 222(2): 214-22, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23121477

RESUMO

Many training concepts take muscle properties such as contraction speed or muscle topography into account to achieve an optimal training outcome. Thus far, the internal architecture of muscles has largely been neglected, although it is well known that parameters such as pennation angles or the lengths of fascicles but also the proportions of fleshy and tendinous fascicle parts have a major impact on the contraction behaviour of a muscle. Here, we present the most detailed description of the intramuscular fascicle architecture of the human perivertebral muscles available so far. For this, one adult male cadaver was studied. Our general approach was to digitize the geometry of each fascicle of the muscles of back proper (Erector spinae) - the Spinalis thoracis, Iliocostalis lumborum, Longissimus thoracis and the Multifidus thoracis et lumborum - and of the deep muscles of the abdomen - Psoas minor, Psoas major and Quadratus lumborum - during a layerwise dissection. Architectural parameters such as fascicle angles to the sagittal and the frontal planes as well as fascicle lengths were determined for each fascicle, and are discussed regarding their consequences for the function of the muscle. For example, compared with the other dorsovertebral muscles, the Longissimus thoracis can produce greater shortening distances because of its relatively long fleshy portions, and it can store more elastic energy due to both its relatively long fleshy and tendinous fascicle portions. The Quadratus lumborum was outstanding because of its many architectural subunits defined by distinct attachment sites and fascicle lengths. The presented database will improve biomechanical models of the human trunk by allowing the incorporation of anisotropic muscle properties such as the fascicle direction into finite element models. This information will help to increase our understanding of the functionality of the human back musculature, and may thereby improve future training concepts.


Assuntos
Músculo Esquelético/anatomia & histologia , Adulto , Dorso , Cadáver , Humanos , Masculino , Ilustração Médica , Modelos Anatômicos
13.
Artigo em Inglês | MEDLINE | ID: mdl-23085986

RESUMO

Vocal production in songbirds requires the control of the respiratory system, the syrinx as sound source and the vocal tract as acoustic filter. Vocal tract movements consist of beak, tongue and hyoid movements, which change the volume of the oropharyngeal-esophageal cavity (OEC), glottal movements and tracheal length changes. The respective contributions of each movement to filter properties are not completely understood, but the effects of this filtering are thought to be very important for acoustic communication in birds. One of the most striking movements of the upper vocal tract during vocal behavior in songbirds involves the OEC. This study measured the acoustic effect of OEC adjustments in zebra finches by comparing resonance acoustics between an utterance with OEC expansion (calls) and a similar utterance without OEC expansion (respiratory sounds induced by a bilateral syringeal denervation). X-ray cineradiography confirmed the presence of an OEC motor pattern during song and call production, and a custom-built Hall-effect collar system confirmed that OEC expansion movements were not present during respiratory sounds. The spectral emphasis during zebra finch call production ranging between 2.5 and 5 kHz was not present during respiratory sounds, indicating strongly that it can be attributed to the OEC expansion.


Assuntos
Adaptação Fisiológica/fisiologia , Tentilhões/fisiologia , Prega Vocal/inervação , Prega Vocal/fisiologia , Vocalização Animal/fisiologia , Estimulação Acústica , Animais , Cinerradiografia , Esôfago/fisiologia , Masculino , Modelos Biológicos , Movimento , Orofaringe/fisiologia , Valor Preditivo dos Testes , Gravação em Vídeo
14.
Biol Cybern ; 107(5): 529-44, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23250621

RESUMO

Salamanders have captured the interest of biologists and roboticists for decades because of their ability to locomote in different environments and their resemblance to early representatives of tetrapods. In this article, we review biological and robotic studies on the kinematics (i.e., angular profiles of joints) of salamander locomotion aiming at three main goals: (i) to give a clear view of the kinematics, currently available, for each body part of the salamander while moving in different environments (i.e., terrestrial stepping, aquatic stepping, and swimming), (ii) to examine what is the status of our current knowledge and what remains unclear, and (iii) to discuss how much robotics and modeling have already contributed and will potentially contribute in the future to such studies.


Assuntos
Locomoção/fisiologia , Robótica , Urodelos/fisiologia , Animais , Fenômenos Biomecânicos , Cibernética , Extremidades/fisiologia , Modelos Biológicos , Natação/fisiologia , Urodelos/anatomia & histologia
15.
PLoS One ; 7(12): e52202, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23300614

RESUMO

Animals alter their locomotor mechanics to adapt to a loss of limb function. To better understand their compensatory mechanisms, this study evaluated the changes in the fore-aft ground forces to forelimb lameness and tested the hypothesis that dogs unload the affected limb by producing a nose-up pitching moment via the exertion of a net-propulsive force when the lame limb is on the ground. Seven healthy Beagles walked and trotted at steady speed on an instrumented treadmill while horizontal force data were collected before and after a moderate lameness was induced. Peak, mean and summed braking and propulsive forces as well as the duration each force was exerted and the time to reach maximum force were evaluated for both the sound and the lame condition. Compared with the sound condition, a net-propulsive force was produced by the lame diagonal limbs due to a reduced braking force in the affected forelimb and an increased propulsive force in the contralateral hindlimb when the dogs walked and trotted. To regain pitch stability and ensure steady speed for a given locomotor cycle, the dogs produced a net-braking force when the sound diagonal limbs were on the ground by exerting greater braking forces in both limbs during walking and additionally reducing the propulsive force in the hindlimb during trotting. Consistent with the proposed mechanism, dogs maximize their double support phases when walking. Likely associated with the fore-aft force adaptations to lameness are changes in muscle recruitment that potentially result in short- and long-term effects on the limb and trunk muscles.


Assuntos
Adaptação Fisiológica , Membro Anterior/fisiologia , Marcha/fisiologia , Coxeadura Animal/fisiopatologia , Fenômenos Mecânicos , Caminhada/fisiologia , Aceleração , Animais , Fenômenos Biomecânicos , Cães , Feminino , Masculino , Suporte de Carga/fisiologia
16.
J Exp Biol ; 215(Pt 2): 287-300, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-22189773

RESUMO

The extrinsic limb muscles perform locomotor work and must adapt their activity to changes in gait and locomotor speed, which can alter the work performed by, and forces transmitted across, the proximal fulcra of the limbs where these muscles operate. We recorded electromyographic activity of 23 extrinsic forelimb and hindlimb muscles and one trunk muscle in dogs while they walked, trotted and galloped on a level treadmill. Muscle activity indicates that the basic functions of the extrinsic limb muscles - protraction, retraction and trunk support - are conserved among gaits. The forelimb retains its strut-like behavior in all gaits, as indicated by both the relative inactivity of the retractor muscles (e.g. the pectoralis profundus and the latissimus dorsi) during stance and the protractor muscles (e.g. the pectoralis superficialis and the omotransversarius) in the first half of stance. The hindlimb functions as a propulsive lever in all gaits, as revealed by the similar timing of activity of retractors (e.g. the biceps femoris and the gluteus medius) during stance. Excitation increased in many hindlimb muscles in the order walk-trot-gallop, consistent with greater propulsive impulses in faster gaits. Many forelimb muscles, in contrast, showed the greatest excitation at trot, in accord with a shorter limb oscillation period, greater locomotor work performed by the forelimb and presumably greater absorption of collisional energy.


Assuntos
Cães/fisiologia , Membro Anterior/fisiologia , Marcha , Membro Posterior/fisiologia , Músculo Esquelético/fisiologia , Animais , Eletromiografia/veterinária , Locomoção
17.
Proc Natl Acad Sci U S A ; 108(46): 18631-6, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22065766

RESUMO

Humans are known to have energetically optimal walking and running speeds at which the cost to travel a given distance is minimized. We hypothesized that "optimal" walking and running speeds would also exist at the level of individual locomotor muscles. Additionally, because humans are 60-70% more economical when they walk than when they run, we predicted that the different muscles would exhibit a greater degree of tuning to the energetically optimal speed during walking than during running. To test these hypotheses, we used electromyography to measure the activity of 13 muscles of the back and legs over a range of walking and running speeds in human subjects and calculated the cumulative activity required from each muscle to traverse a kilometer. We found that activity of each of these muscles was minimized at specific walking and running speeds but the different muscles were not tuned to a particular speed in either gait. Although humans are clearly highly specialized for terrestrial locomotion compared with other great apes, the results of this study indicate that our locomotor muscles are not tuned to specific walking or running speeds and, therefore, do not maximize the economy of locomotion. This pattern may have evolved in response to selection to broaden the range of sustainable running speeds, to improve performance in motor behaviors not related to endurance locomotion, or in response to selection for both.


Assuntos
Locomoção , Sistema Musculoesquelético/fisiopatologia , Caminhada/fisiologia , Adulto , Fenômenos Biomecânicos , Fenômenos Biofísicos , Eletrodos , Eletromiografia/métodos , Metabolismo Energético , Marcha , Humanos , Masculino , Corrida , Fatores de Tempo
18.
Front Zool ; 8(1): 4, 2011 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-21306656

RESUMO

The axial musculoskeletal system represents the plesiomorphic locomotor engine of the vertebrate body, playing a central role in locomotion. In craniates, the evolution of the postcranial skeleton is characterized by two major transformations. First, the axial skeleton became increasingly functionally and morphologically regionalized. Second, the axial-based locomotion plesiomorphic for craniates became progressively appendage-based with the evolution of extremities in tetrapods. These changes, together with the transition to land, caused increased complexity in the planes in which axial movements occur and moments act on the body and were accompanied by profound changes in axial muscle function. To increase our understanding of the evolutionary transformations of the structure and function of the perivertebral musculature, this review integrates recent anatomical and physiological data (e.g., muscle fiber types, activation patterns) with gross-anatomical and kinematic findings for pivotal craniate taxa. This information is mapped onto a phylogenetic hypothesis to infer the putative character set of the last common ancestor of the respective taxa and to conjecture patterns of locomotor and muscular evolution. The increasing anatomical and functional complexity in the muscular arrangement during craniate evolution is associated with changes in fiber angulation and fiber-type distribution, i.e., increasing obliqueness in fiber orientation and segregation of fatigue-resistant fibers in deeper muscle regions. The loss of superficial fatigue-resistant fibers may be related to the profound gross anatomical reorganization of the axial musculature during the tetrapod evolution. The plesiomorphic function of the axial musculature -mobilization- is retained in all craniates. Along with the evolution of limbs and the subsequent transition to land, axial muscles additionally function to globally stabilize the trunk against inertial and extrinsic limb muscle forces as well as gravitational forces. Associated with the evolution of sagittal mobility and a parasagittal limb posture, axial muscles in mammals also stabilize the trunk against sagittal components of extrinsic limb muscle action as well as the inertia of the body's center of mass. Thus, the axial system is central to the static and dynamic control of the body posture in all craniates and, in gnathostomes, additionally provides the foundation for the mechanical work of the appendicular system.

19.
J Anat ; 218(4): 402-12, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21255013

RESUMO

Different locomotor and postural demands are met partly due to the varying properties and proportions of the muscle fibre types within the skeletal muscles. Such data are therefore important in understanding the subtle relationships between morphology, function and behaviour. The triceps surae muscle group is of particular interest when studying our closest living relatives, the non-human great apes, as they lack a significant external Achilles tendon, crucial to running locomotion in humans and other cursorial species. The aim of this study, therefore, was to determine the proportions of type I (slow) and type II (fast) fibres throughout these muscles in chimpanzees and orangutans using immunohistochemistry. The orangutan had a higher proportion of type I fibres in all muscles compared with the chimpanzees, related to their slower, more controlled movements in their arboreal habitat. The higher proportion of type II fibres in the chimpanzees likely reflects a compromise between their need for controlled mobility when arboreal, and greater speed and power when terrestrial. Overall, the proportion of slow fibres was greater in the soleus muscle compared with the gastrocnemius muscles, and there was some evidence of proximal to distal and medial to lateral variations within some muscles. This study has shown that not only do orangutans and chimpanzees have very different muscle fibre populations that reflect their locomotor repertoires, but it also shows how the proportion of fibre types provides an additional mechanism by which the performance of a muscle can be modulated to suit the needs of a species.


Assuntos
Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/patologia , Pan troglodytes/fisiologia , Pongo/fisiologia , Animais , Tornozelo , Feminino , Imuno-Histoquímica , Masculino , Fibras Musculares de Contração Rápida/patologia , Fibras Musculares de Contração Lenta/patologia
20.
J Theor Biol ; 281(1): 122-32, 2011 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-20211632

RESUMO

This work deals with the development and implementation of a new fatigue model for simulating fatigue effects in skeletal muscles. Basic idea of this modelling strategy is an approach that divides the fibres of a muscle into three groups: fibres in the active state, those that are already fatigued and fibres in the resting state. All fibres are able to switch between the different groups by defining adequate rates. In this way a continuous transfer of fibres between those three states has been described. Rooted on an incompressible, hyperelastic constitutive law with transversely isotropic characteristics the fatigue model has been implemented in the framework of the finite element method. Numerical examples are given in order to illustrate the ability of this model. Further, we validate the model by fatigue experiments of the rat soleus muscle. In doing so, it proves that the model is able to predict physiological observations and mechanical test results.


Assuntos
Modelos Biológicos , Fadiga Muscular/fisiologia , Músculo Esquelético/fisiologia , Animais , Processamento de Imagem Assistida por Computador , Contração Isométrica/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/anatomia & histologia , Ratos , Reprodutibilidade dos Testes , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...