Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 238: 119988, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37126996

RESUMO

As climate change adaptation strategies, both Managed Aquifer (MAR) and Surface Water Recharge (MSWR) are not only highly suitable tools to mitigate negative effects on water resources but also bear large potential for concomitant exploitation of thermal energy. They should thus form an integral part of any sustainable water resources management strategy. However, while at global scale general water resource adaptation and mitigation measures are discussed widely, measures that build on thermal exploitation of MAR and MSWR, and which are readily adaptable to various different local and regional scale conditions, have yet to be developed. Here, based on systematic numerical analyses of the sensitivity of groundwater and surface water recharge as well as water temperatures to climate change, we present adaptable implementation strategies of MAR and MSWR with concomitant exploitation of their thermal energy potential. Strategies and feasibility benchmarks for the exploitation of hydrologic and energetic potentials of MAR and MSWR were developed based on three hydrologically and hydrogeologically contrasting urban study sites near the city of Basel, Switzerland. Our studies show projected trends in the number of days when surface water temperatures exceed 25 °C examined for various streamflow and climate scenarios. We illustrate that local hydrogeologic settings and hydrological boundary conditions as well as legal aspects affect to which degree MAR and MSWR are suitable solutions as climate change adaptation measures. Optimal situations for exploiting the potential of seasonal heat storage in MAR and MSWR exist where subsurface travel times between the injection and the withdrawal or exfiltration point are between 4 and 8 months and legal limits allow a sufficiently large temperature spread. In such settings, the exploitable water flux and temperature spread of MAR and MSWR reaches a heat potential of 14 to 20 MW (i.e., corresponding to 3 to 7 wind power plants), and energetic exploitation becomes a suitable tool either for local low-temperature heat applications such as heating and hot water or for ecological use as a heat and water buffer in rivers affected by seasonal droughts. As a positive side effect, climate-induced warming of groundwater resources and temperature increases in drinking water withdrawals would be mitigated simultaneously.


Assuntos
Água Subterrânea , Água , Mudança Climática , Recursos Hídricos , Rios
2.
Ground Water ; 57(1): 63-74, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30394530

RESUMO

For the simulation of winter hydrological processes a gap in the availability of flow models existed: one either had the choice between (1) physically-based and fully-integrated, but computationally very intensive, or (2) simplified and compartamentalized, but computationally less expensive, simulators. To bridge this gap, we here present the integration of a computationally efficient representation of winter hydrological processes (snowfall, snow accumulation, snowmelt, pore water freeze-thaw) in a fully-integrated surface water-groundwater flow model. This allows the efficient simulation of catchment-scale hydrological processes in locations significantly influenced by winter processes. Snow accumulation and snowmelt are based on the degree-day method and pore water freeze-thaw is calculated with a vertical heat conduction approach. This representation of winter hydrological processes is integrated into the fully-coupled surface water-groundwater flow model HydroGeoSphere. A benchmark for pore water freeze-thaw as well as two illustrative examples are provided.


Assuntos
Água Subterrânea , Água , Hidrologia , Neve , Movimentos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...