Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Biotechnol ; 24(1): 38, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831403

RESUMO

BACKGROUND: Antibiotic-containing carrier systems are one option that offers the advantage of releasing active ingredients over a longer period of time. In vitro sustained drug release from a carrier system consisting of microporous ß-TCP ceramic and alginate has been reported in previous works. Alginate dialdehyde (ADA) gelatin gel showed both better mechanical properties when loaded into a ß-TCP ceramic and higher biodegradability than pure alginate. METHODS: Dual release of daptomycin and BMP-2 was measured on days 1, 2, 3, 6, 9, 14, 21, and 28 by HPLC and ELISA. After release, the microbial efficacy of the daptomycin was verified and the biocompatibility of the composite was tested in cell culture. RESULTS: Daptomycin and the model compound FITC protein A (n = 30) were released from the composite over 28 days. A Daptomycin release above the minimum inhibitory concentration (MIC) by day 9 and a burst release of 71.7 ± 5.9% were observed in the loaded ceramics. Low concentrations of BMP-2 were released from the loaded ceramics over 28 days.


Assuntos
Antibacterianos , Proteína Morfogenética Óssea 2 , Fosfatos de Cálcio , Cerâmica , Daptomicina , Gelatina , Proteína Morfogenética Óssea 2/química , Proteína Morfogenética Óssea 2/metabolismo , Daptomicina/química , Daptomicina/farmacologia , Gelatina/química , Cerâmica/química , Antibacterianos/química , Antibacterianos/farmacologia , Fosfatos de Cálcio/química , Animais , Testes de Sensibilidade Microbiana , Camundongos , Portadores de Fármacos/química , Liberação Controlada de Fármacos
2.
J Mater Sci Mater Med ; 34(8): 39, 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37498466

RESUMO

The aim of this study was to produce a composite of microporous ß-TCP filled with alginate-gelatin crosslinked hydrogel, clindamycin and bone morphogenetic protein (BMP-2) to prolong the drug-release behaviour for up to 28 days. The most promising alginate-di-aldehyde(ADA)-gelatin gel for drug release from microcapsules was used to fill microporous ß-TCP ceramics under directional flow in a special loading chamber. Dual release of clindamycin and BMP-2 was measured on days 1, 2, 3, 6, 9, 14, 21 and 28 by high performance liquid chromatography (HPLC) and enzyme-linked immunosorbent assay (ELISA). After release, the microbial efficacy of the clindamycin was checked and the biocompatibility of the composite was tested in cell culture. Clindamycin and the model substance FITC-protein A were released from microcapsules over 28 days. The clindamycin burst release was 43 ± 1%. For the loaded ceramics, a clindamycin release above the minimal inhibitory concentration (MIC) until day 9 and a burst release of 90.56 ± 2.96% were detected. BMP-2 was released from the loaded ceramics in low concentrations over 28 days. The release of active substances from ß-TCP and hydrogel have already been extensively studied. Directional flow loading is a special procedure in which the ceramic could act as a stabilizer in the bone and, as a biodegradable system, enables a single-stage surgical procedure. Whether ADA-gelatin gel is suitable for this procedure as a more biodegradable alternative to pure alginate or whether a dual release is possible in this composite has not yet been investigated.


Assuntos
Proteína Morfogenética Óssea 2 , Clindamicina , Alginatos/química , Proteína Morfogenética Óssea 2/química , Cápsulas , Cerâmica/química , Gelatina/química , Hidrogéis/química , Humanos , Animais
3.
Gels ; 8(6)2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35735709

RESUMO

The aim of the present work was to develop a dual staged drug release of an antibiotic (clindamycin) and a growth factor: bone morphogenetic protein-2 (BMP-2) from a biodegradable system consisting of hydrogel and gelatin nanoparticles (GNP). Two-step de-solvation allowed us to prepare GNPs (~100 nm) as drug carriers. Fluorescein isothiocyanate (FITC)-conjugated protein A was used as a model substance for BMP-2. A 28-day release experiment was performed to determine the release kinetics from GNP for both FITC-protein A and BMP-2, and for clindamycin (CLI) from the hydrogel. The size, structure, and overall morphology of GNP samples (empty, loaded with FITC-protein A and BMP-2) were examined using an environmental scanning electron microscope (ESEM). Cell culture assays (Live/dead; cell proliferation; cytotoxicity) were performed with MG-63 cells and BMP-2-loaded GNPs. Drug release experiments using clindamycin-loaded alginate-di-aldehyde (ADA) gelatin gels containing the drug-loaded GNPs were performed for 28 days. The resulting GNPs showed an empty size of 117 ± 29 nm, 176 ± 15 nm and 216 ± 36 nm when containing 2% FITC-protein A and 1% BMP-2, respectively. No negative effects of BMP-2-loaded GNPs on MG-63 cells were observed in live/dead staining. In the proliferation assay, an increase in cell proliferation was observed for both GNPs (GNP + BMP-2 and controls). The cytotoxicity assay continuously showed very low cytotoxicity for GNPs (empty; loaded). Clindamycin release showed a concentration of 25-fold higher than the minimum inhibitory concentration (MIC) against Staphylococcus aureus throughout the 28 day period. BMP-2 showed a reduced burst release and a steady release (~2 µg/mL) over a 28 day period.

4.
Acta Biomater ; 144: 230-241, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35304323

RESUMO

The aim of this work was to establish an organ model for staphylococcal infection of human bone samples and to investigate the influence and efficacy of a microporous ß-tricalcium phosphate ceramic (ß-TCP, RMS Foundation) loaded with hydrogels (alginate, alginate-di-aldehyde (ADA)-gelatin) and clindamycin on infected human bone tissue over a period of 28 days. For this purpose, human tibia plateaus, collected during total knee replacement surgery, were used as a source of bone material. Samples were infected with S. aureus ATCC29213 and treated with differently loaded ß-TCP composites (alginate +/- clindamycin, ADA-gelatin +/- clindamycin, unloaded). The loading of the composites was carried out by means of a flow chamber. The infection was observed for 28 days, quantifying bacteria in the medium and the osseus material on day 1, 7, 14, 21 and 28. All samples were histologically processed for bone vitality evaluation. Bone infection could be consistently performed within the organ model. In addition, a strong reduction in bacterial counts was recorded in the groups treated with ADA-gelatin + clindamycin and alginate + clindamycin, while the bacterial count in the control groups remained constant. No significant differences between groups could be observed in the number of lacunae filled with osteocytes suggesting no differences in bone vitality among groups. In an ex-vivo human bone infection model, over a period of 28 days bacterial growth could be reduced by treatment with ADA-Gel + CLI and ALG + CLI -releasing ß-TCP composites. This could be relevant for its clinical use. Further work will be necessary to improve the loading of ß-TCP and the bone infection organ model itself. STATEMENT OF SIGNIFICANCE: The common treatment of bone infections is debridement and systemic administration of antibiotics. In some cases, antibiotic-containing carriers are already used, but these must be removed again. Our work is intended to show another treatment option. The scaffold we have developed, made of a calcium phosphate ceramic and a hydrogel as the active substance carrier, can, in addition to releasing the active substance, also assume a load-bearing function of the bone and is biodegradable. In addition, the model we developed can also be used for the analysis and treatment of bone infections other than those of the musculoskeletal system. More importantly, it can also serve as a substitute for previously used animal experiments.


Assuntos
Materiais Biocompatíveis , Osteomielite , Alginatos/farmacologia , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/uso terapêutico , Osso e Ossos , Fosfatos de Cálcio/farmacologia , Fosfatos de Cálcio/uso terapêutico , Clindamicina/farmacologia , Clindamicina/uso terapêutico , Gelatina/farmacologia , Humanos , Hidrogéis/farmacologia , Hidrogéis/uso terapêutico , Osteomielite/tratamento farmacológico , Staphylococcus aureus
5.
Materials (Basel) ; 14(11)2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34206040

RESUMO

In the present work, an ex vivo organ model using human bone (explant) was developed for the evaluation of the initial osseointegration behavior of implant materials. The model was tested with additive manufactured Ti6Al4V test substrates with different 3D geometries. Explants were obtained from patients who underwent total knee replacement surgery. The tibial plateaus were used within 24 h after surgery to harvest bone cylinders (BC) from the anterior side using hollow burrs. The BCs were brought into contact with the test substrate and inserted into an agarose mold, then covered with cell culture media and subjected to the external load of 500 g. Incubation was performed for 28 days. After 28d the test substrate was removed for further analysis. Cells grown out BC onto substrate were immunostained with DAPI and with an antibody against Collagen-I and alkaline phosphatase (ALP) for visualization and cell counting. We show that cells stayed alive for up to 28d in our organ model. The geometry of test substrates influences the number of cells grown onto substrate from BCs. The model presented here can be used for testing implant materials as an alternative for in vitro tests and animal models.

6.
Materials (Basel) ; 14(5)2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33803101

RESUMO

This work aimed to determine the influence of two hydrogels (alginate, alginate-di-aldehyde (ADA)/gelatin) on the mechanical strength of microporous ceramics, which have been loaded with these hydrogels. For this purpose, the compressive strength was determined using a Zwick Z005 universal testing machine. In addition, the degradation behavior according to ISO EN 10993-14 in TRIS buffer pH 5.0 and pH 7.4 over 60 days was determined, and its effects on the compressive strength were investigated. The loading was carried out by means of a flow-chamber. The weight of the samples (manufacturer: Robert Mathys Foundation (RMS) and Curasan) in TRIS solutions pH 5 and pH 7 increased within 4 h (mean 48 ± 32 mg) and then remained constant over the experimental period of 60 days. The determination surface roughness showed a decrease in the value for the ceramics incubated in TRIS compared to the untreated ceramics. In addition, an increase in protein concentration in solution was determined for ADA gelatin-loaded ceramics. The macroporous Curasan ceramic exhibited a maximum failure load of 29 ± 9.0 N, whereas the value for the microporous RMS ceramic was 931 ± 223 N. Filling the RMS ceramic with ADA gelatin increased the maximum failure load to 1114 ± 300 N. The Curasan ceramics were too fragile for loading. The maximum failure load decreased for the RMS ceramics to 686.55 ± 170 N by incubation in TRIS pH 7.4 and 651 ± 287 N at pH 5.0.

7.
Materials (Basel) ; 14(8)2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33919880

RESUMO

The objective of this study was to vary the wall thicknesses and pore sizes of inversely printed 3D molded bodies. Wall thicknesses were varied from 1500 to 2000 to 2500 µm. The pores had sizes of 500, 750 and 1000 µm. The sacrificial structures were fabricated from polylactide (PLA) using fused deposition modeling (FDM). To obtain the final bioceramic scaffolds, a water-based slurry was filled into the PLA molds. The PLA sacrificial molds were burned out at approximately 450 °C for 4 h. Subsequently, the samples were sintered at 1250 °C for at least 4 h. The scaffolds were mechanically characterized (native and after incubation in simulated body fluid (SBF) for 28 days). In addition, the biocompatibility was assessed by live/dead staining. The scaffolds with a strand spacing of 500 µm showed the highest compressive strength; there was no significant difference in compressive strength regardless of pore size. The specimens with 1000 µm pore size showed a significant dependence on strand width. Thus, the specimens (1000 µm pores) with 2500 µm wall thickness showed the highest compressive strength of 5.97 + 0.89 MPa. While the 1000(1500) showed a value of 2.90 + 0.67 MPa and the 1000(2000) of 3.49 + 1.16 MPa. As expected for beta-Tricalciumphosphate (ß-TCP), very good biocompatibility was observed with increasing cell numbers over the experimental period.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...