Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Development ; 147(9)2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32238425

RESUMO

Direction-selective T4/T5 neurons exist in four subtypes, each tuned to visual motion along one of the four cardinal directions. Along with their directional tuning, neurons of each T4/T5 subtype orient their dendrites and project their axons in a subtype-specific manner. Directional tuning, thus, appears strictly linked to morphology in T4/T5 neurons. How the four T4/T5 subtypes acquire their distinct morphologies during development remains largely unknown. Here, we investigated when and how the dendrites of the four T4/T5 subtypes acquire their specific orientations, and profiled the transcriptomes of all T4/T5 neurons during this process. This revealed a simple and stable combinatorial code of transcription factors defining the four T4/T5 subtypes during their development. Changing the combination of transcription factors of specific T4/T5 subtypes resulted in predictable and complete conversions of subtype-specific properties, i.e. dendrite orientation and matching axon projection pattern. Therefore, a combinatorial code of transcription factors coordinates the development of dendrite and axon morphologies to generate anatomical specializations that differentiate subtypes of T4/T5 motion-sensing neurons.


Assuntos
Proteínas de Drosophila/metabolismo , Células Receptoras Sensoriais/fisiologia , Fatores de Transcrição/metabolismo , Animais , Dendritos/metabolismo , Dendritos/fisiologia , Drosophila , Proteínas de Drosophila/genética , Percepção de Movimento/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia , Células Receptoras Sensoriais/metabolismo , Fatores de Transcrição/genética , Vias Visuais/metabolismo , Vias Visuais/fisiologia
2.
Development ; 146(2)2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30642835

RESUMO

In the Drosophila visual system, T4/T5 neurons represent the first stage of computation of the direction of visual motion. T4 and T5 neurons exist in four subtypes, each responding to motion in one of the four cardinal directions and projecting axons into one of the four lobula plate layers. However, all T4/T5 neurons share properties essential for sensing motion. How T4/T5 neurons acquire their properties during development is poorly understood. We reveal that the transcription factors SoxN and Sox102F control the acquisition of properties common to all T4/T5 neuron subtypes, i.e. the layer specificity of dendrites and axons. Accordingly, adult flies are motion blind after disruption of SoxN or Sox102F in maturing T4/T5 neurons. We further find that the transcription factors Ato and Dac are redundantly required in T4/T5 neuron progenitors for SoxN and Sox102F expression in T4/T5 neurons, linking the transcriptional programmes specifying progenitor identity to those regulating the acquisition of morphological properties in neurons. Our work will help to link structure, function and development in a neuronal type performing a computation that is conserved across vertebrate and invertebrate visual systems.


Assuntos
Movimento Celular , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Neurônios/citologia , Neurônios/metabolismo , Transcrição Gênica , Animais , Axônios/metabolismo , Movimento Celular/genética , Dendritos/metabolismo , Proteínas de Drosophila/metabolismo , Inativação Gênica , Atividade Motora , Neurópilo/metabolismo , Lobo Óptico de Animais não Mamíferos/embriologia , Lobo Óptico de Animais não Mamíferos/metabolismo , Ativação Transcricional/genética
3.
Biol Open ; 4(9): 1105-8, 2015 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-26231626

RESUMO

Avoidance of predators or impending collisions is important for survival. Approaching objects can be mimicked by expanding flow-fields. Tethered flying fruit flies, when confronted with an expansion flow-field, reliably turn away from the pole of expansion when presented laterally, or perform a landing response when presented frontally. Here, we show that the response to an expansion flow-field is independent of the overall luminance change and edge acceleration. As we demonstrate by blocking local motion-sensing neurons T4 and T5, the response depends crucially on the neural computation of appropriately aligned local motion vectors, using the same hardware that also controls the optomotor response to rotational flow-fields.

4.
Nature ; 500(7461): 212-6, 2013 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-23925246

RESUMO

The extraction of directional motion information from changing retinal images is one of the earliest and most important processing steps in any visual system. In the fly optic lobe, two parallel processing streams have been anatomically described, leading from two first-order interneurons, L1 and L2, via T4 and T5 cells onto large, wide-field motion-sensitive interneurons of the lobula plate. Therefore, T4 and T5 cells are thought to have a pivotal role in motion processing; however, owing to their small size, it is difficult to obtain electrical recordings of T4 and T5 cells, leaving their visual response properties largely unknown. We circumvent this problem by means of optical recording from these cells in Drosophila, using the genetically encoded calcium indicator GCaMP5 (ref. 2). Here we find that specific subpopulations of T4 and T5 cells are directionally tuned to one of the four cardinal directions; that is, front-to-back, back-to-front, upwards and downwards. Depending on their preferred direction, T4 and T5 cells terminate in specific sublayers of the lobula plate. T4 and T5 functionally segregate with respect to contrast polarity: whereas T4 cells selectively respond to moving brightness increments (ON edges), T5 cells only respond to moving brightness decrements (OFF edges). When the output from T4 or T5 cells is blocked, the responses of postsynaptic lobula plate neurons to moving ON (T4 block) or OFF edges (T5 block) are selectively compromised. The same effects are seen in turning responses of tethered walking flies. Thus, starting with L1 and L2, the visual input is split into separate ON and OFF pathways, and motion along all four cardinal directions is computed separately within each pathway. The output of these eight different motion detectors is then sorted such that ON (T4) and OFF (T5) motion detectors with the same directional tuning converge in the same layer of the lobula plate, jointly providing the input to downstream circuits and motion-driven behaviours.


Assuntos
Drosophila/fisiologia , Percepção de Movimento/fisiologia , Vias Visuais/fisiologia , Animais , Comportamento Animal/fisiologia , Drosophila/citologia , Interneurônios/fisiologia , Locomoção/fisiologia , Neurônios/fisiologia , Transdução de Sinais , Vias Visuais/citologia
5.
Nat Neurosci ; 16(6): 730-8, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23624513

RESUMO

Different visual features of an object, such as its position and direction of motion, are important elements for animal orientation, but the neural circuits extracting them are generally not well understood. We analyzed this problem in Drosophila, focusing on two well-studied behaviors known as optomotor response and fixation response. In the neural circuit controlling the optomotor response, columnar T4 and T5 cells are thought to be crucial. We found that blocking T4 and T5 cells resulted in a complete loss of the optomotor response. Nevertheless, these flies were still able to fixate a black bar, although at a reduced performance level. Further analysis revealed that flies in which T4 and T5 cells were blocked possess an intact position circuit that is implemented in parallel to the motion circuit; the optomotor response is exclusively controlled by the motion circuit, whereas the fixation response is supported by both the position and the motion circuit.


Assuntos
Locomoção/genética , Percepção de Movimento/fisiologia , Neurônios/fisiologia , Percepção Visual/genética , Animais , Animais Geneticamente Modificados , Comportamento Animal , Drosophila/genética , Fenômenos Eletrofisiológicos , Feminino , Modelos Neurológicos , Vias Neurais/fisiopatologia , Neurônios/patologia , Testes Neuropsicológicos , Técnicas de Patch-Clamp
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA