Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 415(13): 2399-2409, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36301331

RESUMO

This study examines how the height and width of peaks exiting the secondary column of a comprehensive two-dimensional gas chromatography (GC × GC) separation are affected by the width of the pulse introduced to the secondary column. A flow-modulated GC × GC apparatus was assembled that allowed input pulse widths to be controlled precisely over a range of 10 to 70 ms. GC × GC chromatograms were obtained using secondary columns containing a polyethylene glycol stationary phase with internal diameters of 0.25 and 0.32 mm. The area, height, and width of peaks emerging from the secondary column were found to be accurately modeled by the convolution of a rectangular function with a Gaussian distribution. The rectangular function represents the input pulse, and the Gaussian distribution represents the broadening that occurs in the secondary column. The minimum peak width that could be produced by the secondary column was determined for a wide range of compounds. Injection pulse widths that matched a compound's minimum peak width produced peaks that were 25% wider than the minimum width and had heights that were 76% of the maximum possible peak height. Increasing the injection width significantly above the minimum width yielded substantially broader peaks with only a modest increase (< 25%) in peak height.

2.
J Chromatogr A ; 1536: 6-15, 2018 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-28629937

RESUMO

A fluidic device called the multi-mode modulator (MMM) has been developed for use as a comprehensive two-dimensional gas chromatography (GC x GC) modulator. The MMM can be employed in a wide range of capacities including as a traditional heart-cutting device, a low duty cycle GC x GC modulator, and a full transfer GC x GC modulator. The MMM is capable of producing narrow component pulses (widths <50ms) while operating at flows compatible with high resolution chromatography. The sample path of modulated components is confined to the interior of a joining capillary. The joining capillary dimensions and the position of the columns within the joining capillary can be optimized for the selected modulation mode. Furthermore, the joining capillary can be replaced easily and inexpensively if it becomes fouled due to sample matrix components or column bleed. The principles of operation of the MMM are described and its efficacy is demonstrated as a heart-cutting device and as a GC x GC modulator.


Assuntos
Cromatografia Gasosa/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...