Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 109(6-1): 064602, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39021011

RESUMO

We numerically investigate the effect of an asymmetric periodic obstacle array in a two-dimensional active nematic. We find that activity in conjunction with the asymmetry leads to a ratchet effect or unidirectional flow of the fluid along the asymmetry direction. The directional flow is still present even in the active turbulent phase when the gap between obstacles is sufficiently small. We demonstrate that the dynamics of the topological defects transition from flow mirroring to smectic-like as the gap between obstacles is made smaller, and explain this transition in terms of the pinning of negative winding number defects between obstacles. This also leads to a nonmonotonic ratchet effect magnitude as a function of obstacle size, so that there is an optimal obstacle size for ratcheting at fixed activity.

2.
Phys Rev Lett ; 132(1): 018301, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38242662

RESUMO

We numerically model a two-dimensional active nematic confined by a periodic array of fixed obstacles. Even in the passive nematic, the appearance of topological defects is unavoidable due to planar anchoring by the obstacle surfaces. We show that a vortex lattice state emerges as activity is increased, and that this lattice may be tuned from "ferromagnetic" to "antiferromagnetic" by varying the gap size between obstacles. We map the rich variety of states exhibited by the system as a function of distance between obstacles and activity, including a pinned defect state, motile defects, the vortex lattice, and active turbulence. We demonstrate that the flows in the active turbulent phase can be tuned by the presence of obstacles, and explore the effects of a frustrated lattice geometry on the vortex lattice phase.

3.
Phys Rev E ; 108(1): L012602, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37583137

RESUMO

Using a minimal continuum model, we investigate the interplay between circular confinement and substrate friction in active nematics. Upon increasing the friction from low to high, we observe a dynamical phase transition from a circulating flow phase to an anisotropic flow phase in which the flow tends to align perpendicular to the nematic director at the boundary. We demonstrate that both the flow structure and dynamic correlations in the latter phase differ from those of an unconfined, active turbulent system and may be controlled by the prescribed nematic boundary conditions. Our results show that substrate friction and geometric confinement act as valuable control parameters in active nematics.

4.
Soft Matter ; 18(41): 8024-8033, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36226483

RESUMO

We study two dimensional tactoids in nematic liquid crystals by using a Q-tensor representation. A bulk free energy of the Maier-Saupe form with eigenvalue constraints on Q, plus elastic terms up to cubic order in Q are used to understand the effects of anisotropic anchoring and Frank-Oseen elasticity on the morphology of nematic-isotropic domains. Further, a volume constraint is introduced to stabilize tactoids of any size at coexistence. We find that anisotropic anchoring results in differences in interface thickness depending on the relative orientation of the director at the interface, and that interfaces become biaxial for tangential alignment when anisotropy is introduced. For negative tactoids, surface defects induced by boundary topology become sharper with increasing elastic anisotropy. On the other hand, by parametrically studying their energy landscape, we find that surface defects do not represent the minimum energy configuration in positive tactoids. Instead, the interplay between Frank-Oseen elasticity in the bulk, and anisotropic anchoring yields semi-bipolar director configurations with non-circular interface morphology. Finally, we find that for growing tactoids the evolution of the director configuration is highly sensitive to the anisotropic term included in the free energy, and that minimum energy configurations may not be representative of kinetically obtained tactoids at long times.

5.
Soft Matter ; 18(11): 2234-2244, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35234228

RESUMO

We introduce a characterization of disclination lines in three dimensional nematic liquid crystals as a tensor quantity related to the so called rotation vector around the line. This quantity is expressed in terms of the nematic tensor order parameter Q, and shown to decompose as a dyad involving the tangent vector to the disclination line and the rotation vector. Further, we derive a kinematic law for the velocity of disclination lines by connecting this tensor to a topological charge density as in the Halperin-Mazenko description of defects in vector models. Using this framework, analytical predictions for the velocity of interacting line disclinations and of self-annihilating disclination loops are given and confirmed through numerical computation.

6.
Phys Rev E ; 102(1-1): 010701, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32794929

RESUMO

Disclination configurations of a nematic liquid crystal are studied within a self-consistent molecular field theory. The theory is based on a tensor order parameter, and can accommodate anisotropic elastic energies without the known divergences in the Landau-de Gennes formulation. Our results agree with the asymptotic results of Dzyaloshinskii for the Frank-Oseen energy far from the defect core, but reveal biaxial order at intermediate distances from the core, crossing over to uniaxial but axisymmetric configurations as the core is approached. The elastic terms considered in our energy allow for the separate control of surface tension, anchoring, and elasticity contrast, and are used to analyze recent results for lyotropic chromonic liquid crystals. The latter display unusually large defect cores (on the order of tens of microns) which can be used for a quantitative comparison with the theory. Both ±1/2 disclination configurations are well reproduced by our calculations. Elastic anisotropy is also shown to lead to qualitative changes in the disclination polarization, a quantity that is proportional to the active stress in models of active matter.

7.
Phys Rev E ; 101(3-1): 032702, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32289934

RESUMO

Nematic liquid crystals exhibit configurations in which the underlying ordering changes markedly on macroscopic length scales. Such structures include topological defects in the nematic phase and tactoids within nematic-isotropic coexistence. We discuss a computational study of inhomogeneous configurations that is based on a field theory extension of the Maier-Saupe molecular model of a uniaxial, nematic liquid crystal. A tensor order parameter is defined as the second moment of an orientational probability distribution, leading to a free energy that is not convex within the isotropic-nematic coexistence region, and that goes to infinity if the eigenvalues of the order parameter become nonphysical. Computations of the spatial profile of the order parameter are presented for an isotropic-nematic interface in one dimension, a tactoid in two dimensions, and a nematic disclination in two dimensions. We compare our results to those given by the Landau-de Gennes free energy for the same configurations and discuss the advantages of such a model over the latter.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...