Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Transl Sci ; 17(5): e13804, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38700454

RESUMO

St. John's wort (SJW) extract, a herbal medicine with antidepressant effects, is a potent inducer of intestinal and/or hepatic cytochrome P450 (CYP) enzymes and P-glycoprotein (P-gp), which can cause clinically relevant drug interactions. It is currently not known whether SJW can also induce P-gp activity at the human blood-brain barrier (BBB), which may potentially lead to decreased brain exposure and efficacy of certain central nervous system (CNS)-targeted P-gp substrate drugs. In this study, we used a combination of positron emission tomography (PET) imaging and cocktail phenotyping to gain a comprehensive picture on the effect of SJW on central and peripheral P-gp and CYP activities. Before and after treatment of healthy volunteers (n = 10) with SJW extract with a high hyperforin content (3-6%) for 12-19 days (1800 mg/day), the activity of P-gp at the BBB was assessed by means of PET imaging with the P-gp substrate [11C]metoclopramide and the activity of peripheral P-gp and CYPs was assessed by administering a low-dose phenotyping cocktail (caffeine, omeprazole, dextromethorphan, and midazolam or fexofenadine). SJW significantly increased peripheral P-gp, CYP3A, and CYP2C19 activity. Conversely, no significant changes in the peripheral metabolism, brain distribution, and P-gp-mediated efflux of [11C]metoclopramide across the BBB were observed following the treatment with SJW extract. Our data suggest that SJW does not lead to significant P-gp induction at the human BBB despite its ability to induce peripheral P-gp and CYPs. Simultaneous intake of SJW with CNS-targeted P-gp substrate drugs is not expected to lead to P-gp-mediated drug interactions at the BBB.


Assuntos
Barreira Hematoencefálica , Hypericum , Floroglucinol , Floroglucinol/análogos & derivados , Extratos Vegetais , Tomografia por Emissão de Pósitrons , Terfenadina/análogos & derivados , Terpenos , Humanos , Hypericum/química , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Floroglucinol/farmacocinética , Floroglucinol/farmacologia , Floroglucinol/administração & dosagem , Extratos Vegetais/farmacologia , Extratos Vegetais/administração & dosagem , Extratos Vegetais/farmacocinética , Masculino , Adulto , Tomografia por Emissão de Pósitrons/métodos , Terpenos/farmacologia , Terpenos/farmacocinética , Terpenos/metabolismo , Feminino , Adulto Jovem , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Compostos Bicíclicos com Pontes/farmacologia , Compostos Bicíclicos com Pontes/farmacocinética , Compostos Bicíclicos com Pontes/administração & dosagem , Terfenadina/farmacocinética , Terfenadina/administração & dosagem , Terfenadina/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Voluntários Saudáveis
2.
Nat Commun ; 14(1): 1227, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36869098

RESUMO

Single ribonucleoside monophosphates (rNMPs) are transiently present in eukaryotic genomes. The RNase H2-dependent ribonucleotide excision repair (RER) pathway ensures error-free rNMP removal. In some pathological conditions, rNMP removal is impaired. If these rNMPs hydrolyze during, or prior to, S phase, toxic single-ended double-strand breaks (seDSBs) can occur upon an encounter with replication forks. How such rNMP-derived seDSB lesions are repaired is unclear. We expressed a cell cycle phase restricted allele of RNase H2 to nick at rNMPs in S phase and study their repair. Although Top1 is dispensable, the RAD52 epistasis group and Rtt101Mms1-Mms22 dependent ubiquitylation of histone H3 become essential for rNMP-derived lesion tolerance. Consistently, loss of Rtt101Mms1-Mms22 combined with RNase H2 dysfunction leads to compromised cellular fitness. We refer to this repair pathway as nick lesion repair (NLR). The NLR genetic network may have important implications in the context of human pathologies.


Assuntos
Redes Reguladoras de Genes , Ribonucleases , Fase S , Replicação do DNA , Endorribonucleases , Genômica , Saccharomyces cerevisiae
3.
Nat Commun ; 13(1): 2374, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35501303

RESUMO

The conserved Mre11-Rad50 complex is crucial for the detection, signaling, end tethering and processing of DNA double-strand breaks. While it is known that Mre11-Rad50 foci formation at DNA lesions accompanies repair, the underlying molecular assembly mechanisms and functional implications remained unclear. Combining pathway reconstitution in electron microscopy, biochemical assays and genetic studies, we show that S. cerevisiae Mre11-Rad50 with or without Xrs2 forms higher-order assemblies in solution and on DNA. Rad50 mediates such oligomerization, and mutations in a conserved Rad50 beta-sheet enhance or disrupt oligomerization. We demonstrate that Mre11-Rad50-Xrs2 oligomerization facilitates foci formation, DNA damage signaling, repair, and telomere maintenance in vivo. Mre11-Rad50 oligomerization does not affect its exonuclease activity but drives endonucleolytic cleavage at multiple sites on the 5'-DNA strand near double-strand breaks. Interestingly, mutations in the human RAD50 beta-sheet are linked to hereditary cancer predisposition and our findings might provide insights into their potential role in chemoresistance.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Hidrolases Anidrido Ácido/metabolismo , DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Endodesoxirribonucleases/metabolismo , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
J Mol Cell Cardiol ; 154: 41-59, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33549681

RESUMO

Heart development relies on PTMs that control cardiomyocyte proliferation, differentiation and cardiac morphogenesis. We generated a map of phosphorylation sites during the early stages of cardiac postnatal development in mice; we quantified over 10,000 phosphorylation sites and 5000 proteins that were assigned to different pathways. Analysis of mitochondrial proteins led to the identification of PGC-1- and ERR-induced regulator in muscle 1 (PERM1), which is specifically expressed in skeletal muscle and heart tissue and associates with the outer mitochondrial membrane. We demonstrate PERM1 is subject to rapid changes mediated by the UPS through phosphorylation of its PEST motif by casein kinase 2. Ablation of Perm1 in mice results in reduced protein expression of lipin-1 accompanied by accumulation of specific phospholipid species. Isolation of Perm1-deficient mitochondria revealed significant downregulation of mitochondrial transport proteins for amino acids and carnitines, including SLC25A12/13/29/34 and CPT2. Consistently, we observed altered levels of various lipid species, amino acids, and acylcarnitines in Perm1-/- mitochondria. We conclude that the outer mitochondrial membrane protein PERM1 regulates homeostasis of lipid and amino acid metabolites in mitochondria.


Assuntos
Proteínas de Membrana/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Musculares/metabolismo , Miocárdio/metabolismo , Fosfoproteínas/metabolismo , Proteômica , Animais , Coração/embriologia , Metabolismo dos Lipídeos , Camundongos , Camundongos Knockout , Mitocôndrias Cardíacas/genética , Mitocôndrias Cardíacas/metabolismo , Proteínas Musculares/genética , Organogênese/genética , Proteômica/métodos
5.
J Mol Biol ; 432(15): 4287-4304, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32446803

RESUMO

The human ribosomal DNA (rDNA) locus encodes a variety of long non-coding RNAs (lncRNAs). Among them, the canonical ribosomal RNAs that are the catalytic components of the ribosomes, as well as regulatory lncRNAs including promoter-associated RNAs (pRNA), stress-induced promoter and pre-rRNA antisense RNAs (PAPAS), and different intergenic spacer derived lncRNA species (IGSRNA). In addition, externally encoded lncRNAs are imported into the nucleolus, which orchestrate the complex regulation of the nucleolar state in normal and stress conditions via a plethora of molecular mechanisms. This review focuses on the triplex and R-loop formation aspects of lncRNAs at the rDNA locus in yeast and human cells. We discuss the protein players that regulate R-loops at rDNA and how their misregulation contributes to DNA damage and disease. Furthermore, we speculate how DNA lesions such as rNMPs or 8-oxo-dG might affect RNA-DNA hybrid formation. The transcription of lncRNA from rDNA has been observed in yeast, plants, flies, worms, mouse and human cells. This evolutionary conservation highlights the importance of lncRNAs in rDNA function and maintenance.


Assuntos
Nucléolo Celular/genética , DNA Ribossômico/metabolismo , RNA Longo não Codificante/metabolismo , Dano ao DNA , DNA Intergênico , Humanos , Estruturas R-Loop , RNA Longo não Codificante/química , Leveduras/genética
6.
Cell Rep ; 23(5): 1342-1356, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29719249

RESUMO

Protein aggregates and cytoplasmic vacuolization are major hallmarks of multisystem proteinopathies (MSPs) that lead to muscle weakness. Here, we identify METTL21C as a skeletal muscle-specific lysine methyltransferase. Insertion of a ß-galactosidase cassette into the Mettl21c mouse locus revealed that METTL21C is specifically expressed in MYH7-positive skeletal muscle fibers. Ablation of the Mettl21c gene reduced endurance capacity and led to age-dependent accumulation of autophagic vacuoles in skeletal muscle. Denervation-induced muscle atrophy highlighted further impairments of autophagy-related proteins, including LC3, p62, and cathepsins, in Mettl21c-/- muscles. In addition, we demonstrate that METTL21C interacts with the ATPase p97 (VCP), which is mutated in various human MSP conditions. We reveal that METTL21C trimethylates p97 on the Lys315 residue and found that loss of this modification reduced p97 hexamer formation and ATPase activity in vivo. We conclude that the methyltransferase METTL21C is an important modulator of protein degradation in skeletal muscle under both normal and enhanced protein breakdown conditions.


Assuntos
Autofagia , Metiltransferases/metabolismo , Músculo Esquelético/enzimologia , Proteólise , Proteína com Valosina/metabolismo , Animais , Masculino , Metilação , Metiltransferases/genética , Camundongos , Camundongos Knockout , Proteína com Valosina/genética
7.
J Biol Chem ; 293(18): 7017-7029, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29511087

RESUMO

Oncostatin M (OSM) and leukemia inhibitory factor (LIF) are closely related members of the interleukin-6 (IL-6) cytokine family. Both cytokines share a common origin and structure, and both interact through a specific region, termed binding site III, to activate a dimeric receptor complex formed by glycoprotein 130 (gp130) and LIF receptor (LIFR) in humans. However, only OSM activates the OSM receptor (OSMR)-gp130 complex. The molecular features that enable OSM to specifically activate the OSMR are currently unknown. To define specific sequence motifs within OSM that are critical for initiating signaling via OSMR, here we generated chimeric OSM-LIF cytokines and performed alanine-scanning experiments. Replacement of the OSM AB loop within OSM's binding site III with that of LIF abrogated OSMR activation, measured as STAT3 phosphorylation at Tyr-705, but did not compromise LIFR activation. Correspondingly, substitution of the AB loop and D-helix in LIF with their OSM counterparts was sufficient for OSMR activation. The alanine-scanning experiments revealed that residues Tyr-34, Gln-38, Gly-39, and Leu-45 (in the AB loop) and Pro-153 (in the D-helix) had specific roles in activating OSMR but not LIFR signaling, whereas Leu-40 and Cys-49 (in the AB loop), and Phe-160 and Lys-163 (in the D-helix) were required for activation of both receptors. Because most of the key amino acid residues identified here are conserved between LIF and OSM, we concluded that comparatively minor differences in a few amino acid residues within binding site III account for the differential biological effects of OSM and LIF.


Assuntos
Subunidade beta de Receptor de Oncostatina M/metabolismo , Oncostatina M/metabolismo , Aminoácidos/química , Aminoácidos/metabolismo , Sítios de Ligação , Receptor gp130 de Citocina/metabolismo , Citocinas/metabolismo , Humanos , Fator Inibidor de Leucemia/metabolismo , Subunidade alfa de Receptor de Fator Inibidor de Leucemia/metabolismo , Mutagênese Sítio-Dirigida , Oncostatina M/química , Oncostatina M/genética , Subunidade beta de Receptor de Oncostatina M/química , Subunidade beta de Receptor de Oncostatina M/genética , Fosforilação , Ligação Proteica , Receptores de OSM-LIF/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais
8.
Br J Haematol ; 169(6): 795-803, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25819228

RESUMO

Recurrent mutations in MYD88 have been identified in >90% of lymphoplasmacytic lymphoma (LPL). Recently, WHIM (warts, hypogammaglobulinaemia, infections, myelokathexis) syndrome-like mutations in CXCR4 have been described in 28% of LPL cases, and seem to impact clinical presentation and response to therapy. We investigated the presence of the MYD88 L265P mutation in 90 decalcified, formalin-fixed, paraffin-embedded (FFPE) bone marrow (BM) biopsies, including 51 cases of LPL, 14 cases of B-cell chronic lymphocytic leukaemia (CLL), 13 cases of marginal zone lymphoma (MZL) and 12 normal controls. In addition, the C-terminal domain of CXCR4 was sequenced in LPL cases. MYD88 L265P was found in 49/51 (96%) LPL cases and in 1/13 (7·6%) MZL (splenic type), whereas all CLL samples remained negative. The two MYD88 wild type LPL cases were associated with cold agglutinin disease. Mutations in CXCR4 were detected in 17/47 (36·2%) LPL cases, which showed a higher extent of BM infiltration and lower leucocyte counts (P = 0·02), haemoglobin (P = 0·05) and platelet counts (P = 0·01). In conclusion the detection of MYD88 L265P mutation in FFPE samples is reliable and useful for subtyping small B-cell lymphomas in BM biopsies. In addition, the presence of CXCR4 mutations identifies a subgroup of LPL patients with higher disease activity.


Assuntos
Mutação , Fator 88 de Diferenciação Mieloide/genética , Receptores CXCR4/genética , Macroglobulinemia de Waldenstrom/diagnóstico , Macroglobulinemia de Waldenstrom/genética , Idoso , Idoso de 80 Anos ou mais , Substituição de Aminoácidos , Medula Óssea/patologia , Feminino , Humanos , Linfoma de Células B/genética , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , Prognóstico , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...