Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JBMR Plus ; 8(6): ziae052, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38764792

RESUMO

Erythropoietin (EPO), primarily produced by interstitial fibroblasts in the kidney during adulthood, and its receptor are well-known for their crucial role in regulating erythropoiesis. Recent research has unveiled an additional function of circulating EPO in the control of bone mass accrual and homeostasis through its receptor, which is expressed in both osteoblasts and osteoclasts. Notably, cells of the osteoblast lineage can produce and secrete functional EPO upon activation of the hypoxia signaling pathway. However, the physiological relevance of osteoblastic EPO remains to be fully elucidated. This study aimed to investigate the potential role of osteoblastic EPO in regulating bone mass accrual and erythropoiesis in young adult mice. To accomplish this, we employed a mutant mouse model lacking EPO specifically in mesenchymal progenitors and their descendants. Our findings indicate that in vivo loss of EPO in the osteoblast lineage does not significantly affect either bone mass accrual or erythropoiesis in young adult mice. Further investigations are necessary to comprehensively understand the potential contribution of EPO produced and secreted by osteoblast cells during aging, repair, and under pathological conditions.

3.
JBMR Plus ; 7(10): e10802, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37808400

RESUMO

Activating parathyroid hormone (PTH)/PTH-related Peptide (PTHrP) receptor (PTH1R) mutations causes Jansen's metaphyseal chondrodysplasia (JMC), a rare disease characterized by growth plate abnormalities, short stature, and PTH-independent hypercalcemia. Previously generated transgenic JMC mouse models, in which the human PTH1R allele with the H223R mutation (H223R-PTH1R) is expressed in osteoblasts via type Ia1 collagen or DMP1 promoters cause excess bone mass, while expression of the mutant allele via the type IIa1 collagen promoter results in only minor growth plate changes. Thus, neither transgenic JMC model adequately recapitulates the human disease. We therefore generated "humanized" JMC mice in which the H223R-PTH1R allele was expressed via the endogenous mouse Pth1r promoter and, thus, in all relevant target tissues. Founders with the H223R allele typically died within 2 months without reproducing; several mosaic male founders, however, lived longer and produced F1 H223R-PTH1R offspring, which were small and exhibited marked growth plate abnormalities. Serum calcium and phosphate levels of the mutant mice were not different from wild-type littermates, but serum PTH and P1NP were reduced significantly, while CTX-1 and CTX-2 were slightly increased. Histological and RNAscope analyses of the mutant tibial growth plates revealed markedly expanded zones of type II collagen-positive, proliferating/prehypertrophic chondrocytes, abundant apoptotic cells in the growth plate center and a progressive reduction of type X collagen-positive hypertrophic chondrocytes and primary spongiosa. The "humanized" H223R-PTH1R mice are likely to provide a more suitable model for defining the JMC phenotype and for assessing potential treatment options for this debilitating disease of skeletal development and mineral ion homeostasis. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

4.
Nat Commun ; 14(1): 3616, 2023 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-37330524

RESUMO

NAD is an essential co-factor for cellular energy metabolism and multiple other processes. Systemic NAD+ deficiency has been implicated in skeletal deformities during development in both humans and mice. NAD levels are maintained by multiple synthetic pathways but which ones are important in bone forming cells is unknown. Here, we generate mice with deletion of Nicotinamide Phosphoribosyltransferase (Nampt), a critical enzyme in the NAD salvage pathway, in all mesenchymal lineage cells of the limbs. At birth, NamptΔPrx1 exhibit dramatic limb shortening due to death of growth plate chondrocytes. Administration of the NAD precursor nicotinamide riboside during pregnancy prevents the majority of in utero defects. Depletion of NAD post-birth also promotes chondrocyte death, preventing further endochondral ossification and joint development. In contrast, osteoblast formation still occurs in knockout mice, in line with distinctly different microenvironments and reliance on redox reactions between chondrocytes and osteoblasts. These findings define a critical role for cell-autonomous NAD homeostasis during endochondral bone formation.


Assuntos
Metabolismo Energético , NAD , Humanos , Camundongos , Animais , NAD/metabolismo , Oxirredução , Homeostase , Camundongos Knockout , Citocinas/metabolismo
5.
Bone Rep ; 18: 101688, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37275785

RESUMO

The role of energy metabolism in bone cells is an active field of investigation. Bone cells are metabolically very active and require high levels of energy in the form of adenosine triphosphate (ATP) to support their function. ATP is generated in the cytosol via glycolysis coupled with lactic acid fermentation and in the mitochondria via oxidative phosphorylation (OXPHOS). OXPHOS is the final convergent metabolic pathway for all oxidative steps of dietary nutrients catabolism. The formation of ATP is driven by an electrochemical gradient that forms across the mitochondrial inner membrane through to the activity of the electron transport chain (ETC) complexes and requires the presence of oxygen as the final electron acceptor. The current literature supports a model in which glycolysis is the main source of energy in undifferentiated mesenchymal progenitors and terminally differentiated osteoblasts, whereas OXPHOS appears relevant in an intermediate stage of differentiation of those cells. Conversely, osteoclasts progressively increase OXPHOS during differentiation until they become multinucleated and mitochondrial-rich terminal differentiated cells. Despite the abundance of mitochondria, mature osteoclasts are considered ATP-depleted, and the availability of ATP is a critical factor that regulates the low survival capacity of these cells, which rapidly undergo death by apoptosis. In addition to ATP, bioenergetic metabolism generates reactive oxygen species (ROS) and intermediate metabolites that regulate a variety of cellular functions, including epigenetics changes of genomic DNA and histones. This review will briefly discuss the role of OXPHOS and the cross-talks OXPHOS-glycolysis in the differentiation process of bone cells.

6.
Int J Mol Sci ; 24(3)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36768133

RESUMO

Bone fractures are a widespread clinical event due to accidental falls and trauma or bone fragility; they also occur in association with various diseases and are common with aging. In the search for new therapeutic strategies, a crucial link between irisin and bone fractures has recently emerged. To explore this issue, we subjected 8-week-old C57BL/6 male mice to tibial fracture, and then we treated them with intra-peritoneal injection of r-Irisin (100 µg/kg/weekly) or vehicle as control. At day 10 post fracture, histological analysis showed a significant reduced expression of inflammatory cytokines as tumor necrosis factor-alpha (TNFα) (p = 0.004) and macrophage inflammatory protein-alpha (MIP-1α) (p = 0.015) in the cartilaginous callus of irisin-treated mice compared to controls, supporting irisin's anti-inflammatory role. We also found increased expressions of the pro-angiogenic molecule vascular endothelial growth factor (VEGF) (p = 0.002) and the metalloproteinase MMP-13 (p = 0.0006) in the irisin-treated mice compared to the vehicle ones, suggesting a myokine involvement in angiogenesis and cartilage matrix degradation processes. Moreover, the bone morphogenetic protein (BMP2) expression was also upregulated (p = 0.002). Taken together, our findings suggest that irisin can contribute to fracture repair by reducing inflammation and promoting vessel invasion, matrix degradation, and bone formation, supporting its possible role as a novel molecule for fracture treatment.


Assuntos
Consolidação da Fratura , Fraturas da Tíbia , Animais , Masculino , Camundongos , Fibronectinas/genética , Camundongos Endogâmicos C57BL , Osteogênese , Fraturas da Tíbia/tratamento farmacológico , Fator A de Crescimento do Endotélio Vascular/genética
7.
Bone Rep ; 19: 101719, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38163016
8.
Cells ; 11(23)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36496973

RESUMO

The clearance of apoptotic cancer cells by macrophages, known as efferocytosis, fuels the bone-metastatic growth of prostate cancer cells via pro-inflammatory and immunosuppressive processes. However, the exact molecular mechanisms remain unclear. In this study, single-cell transcriptomics of bone marrow (BM) macrophages undergoing efferocytosis of apoptotic prostate cancer cells revealed a significant enrichment in their cellular response to hypoxia. Here, we show that BM macrophage efferocytosis increased hypoxia inducible factor-1alpha (HIF-1α) and STAT3 phosphorylation (p-STAT3 at Tyr705) under normoxic conditions, while inhibitors of p-STAT3 reduced HIF-1α. Efferocytosis promoted HIF-1α stabilization, reduced its ubiquitination, and induced HIF-1α and p-STAT3 nuclear translocation. HIF-1α stabilization in efferocytic BM macrophages resulted in enhanced expression of pro-inflammatory cytokine MIF, whereas BM macrophages with inactive HIF-1α reduced MIF expression upon efferocytosis. Stabilization of HIF-1α using the HIF-prolyl-hydroxylase inhibitor, Roxadustat, enhanced MIF expression in BM macrophages. Furthermore, BM macrophages treated with recombinant MIF protein activated NF-κB (p65) signaling and increased the expression of pro-inflammatory cytokines. Altogether, these findings suggest that the clearance of apoptotic cancer cells by BM macrophages triggers p-STAT3/HIF-1α/MIF signaling to promote further inflammation in the bone tumor microenvironment where a significant number of apoptotic cancer cells are present.


Assuntos
Medula Óssea , Neoplasias da Próstata , Masculino , Humanos , Medula Óssea/metabolismo , Macrófagos/metabolismo , Fagocitose , Neoplasias da Próstata/patologia , Citocinas/metabolismo , Inflamação/patologia , Hipóxia/metabolismo , Microambiente Tumoral
9.
JBMR Plus ; 6(6): e10630, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35720665

RESUMO

Proper deposition of the extracellular matrix and its major components, the collagens, is essential for endochondral ossification and bone mass accrual. Collagen prolyl 4-hydroxylases (C-P4Hs) hydroxylate proline residues in the -X-Pro-Gly- repeats of all known collagen types. Their product, 4-hydroxyproline, is essential for correct folding and thermal stability of the triple-helical collagen molecules in physiological body temperatures. We have previously shown that inactivation of the mouse P4ha1 gene, which codes for the catalytic α subunit of the major C-P4H isoform, is embryonic lethal, whereas inactivation of the P4ha2 gene produced only a minor phenotype. Instead, mice with a haploinsufficiency of the P4ha1 gene combined with a homozygous deletion of the P4ha2 gene present with a moderate chondrodysplasia due to transient cell death of the growth plate chondrocytes. Here, to further characterize the bone phenotype of the P4ha1 +/-; P4ha2 -/- mice, we have carried out gene expression analyses at whole-tissue and single-cell levels, biochemical analyses, microcomputed tomography, histomorphometric analyses, and second harmonic generation microscopy to show that C-P4H α subunit expression peaks early and that the C-P4H deficiency leads to reduced collagen amount, a reduced rate of bone formation, and a loss of trabecular and cortical bone volume in the long bones. The total osteoblast number in the proximal P4ha1 +/-; P4ha2 -/- tibia and the C-P4H activity in primary P4ha1 +/-; P4ha2 -/- osteoblasts were reduced, whereas the population of osteoprogenitor colony-forming unit fibroblasts was increased in the P4ha1 +/-; P4ha2 -/- marrow. Thus, the P4ha1 +/-; P4ha2 -/- mouse model recapitulates key aspects of a recently recognized congenital connective tissue disorder with short stature and bone dysplasia caused by biallelic variants of the human P4HA1 gene. Altogether, the data demonstrate the allele dose-dependent importance of the C-P4Hs to the developing organism and a threshold effect of C-P4H activity in the proper production of bone matrix. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

10.
Int J Mol Sci ; 22(19)2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34639200

RESUMO

To date, pharmacological strategies designed to accelerate bone fracture healing are lacking. We subjected 8-week-old C57BL/6 male mice to closed, transverse, mid-diaphyseal tibial fractures and treated them with intraperitoneal injection of a vehicle or r-irisin (100 µg/kg/weekly) immediately following fracture for 10 days or 28 days. Histological analysis of the cartilaginous callus at 10 days showed a threefold increase in Collagen Type X (p = 0.0012) and a reduced content of proteoglycans (40%; p = 0.0018). Osteoclast count within the callus showed a 2.4-fold increase compared with untreated mice (p = 0.026), indicating a more advanced stage of endochondral ossification of the callus during the early stage of fracture repair. Further evidence that irisin induced the transition of cartilage callus into bony callus was provided by a twofold reduction in the expression of SOX9 (p = 0.0058) and a 2.2-fold increase in RUNX2 (p = 0.0137). Twenty-eight days post-fracture, microCT analyses showed that total callus volume and bone volume were increased by 68% (p = 0.0003) and 67% (p = 0.0093), respectively, and bone mineral content was 74% higher (p = 0.0012) in irisin-treated mice than in controls. Our findings suggest that irisin promotes bone formation in the bony callus and accelerates the fracture repair process, suggesting a possible use as a novel pharmacologic modulator of fracture healing.


Assuntos
Cartilagem/citologia , Fibronectinas/administração & dosagem , Consolidação da Fratura , Fraturas Ósseas/terapia , Osteoclastos/citologia , Osteogênese , Proteínas Recombinantes/administração & dosagem , Animais , Cartilagem/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Osteoclastos/metabolismo
11.
Nat Rev Rheumatol ; 17(7): 426-439, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34083809

RESUMO

The physiologically hypoxic intervertebral disc and cartilage rely on the hypoxia-inducible factor (HIF) family of transcription factors to mediate cellular responses to changes in oxygen tension. During homeostatic development, oxygen-dependent prolyl hydroxylases, circadian clock proteins and metabolic intermediates control the activities of HIF1 and HIF2 in these tissues. Mechanistically, HIF1 is the master regulator of glycolytic metabolism and cytosolic lactate levels. In addition, HIF1 regulates mitochondrial metabolism by promoting flux through the tricarboxylic acid cycle, inhibiting downsteam oxidative phosphorylation and controlling mitochondrial health through modulation of the mitophagic pathway. Accumulation of metabolic intermediates from HIF-dependent processes contribute to intracellular pH regulation in the disc and cartilage. Namely, to prevent changes in intracellular pH that could lead to cell death, HIF1 orchestrates a bicarbonate buffering system in the disc, controlled by carbonic anhydrase 9 (CA9) and CA12, sodium bicarbonate cotransporters and an intracellular H+/lactate efflux mechanism. In contrast to HIF1, the role of HIF2 remains elusive; in disorders of the disc and cartilage, its function has been linked to both anabolic and catabolic pathways. The current knowledge of hypoxic cell metabolism and regulation of HIF1 activity provides a strong basis for the development of future therapies designed to repair the degenerative disc.


Assuntos
Fator 1 Induzível por Hipóxia/fisiologia , Disco Intervertebral/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Humanos , Hipóxia/metabolismo , Fator 1 Induzível por Hipóxia/metabolismo , Disco Intervertebral/fisiologia
12.
Methods Mol Biol ; 2245: 53-84, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33315195

RESUMO

Skeletal development is a tightly regulated process that primarily occurs through two distinct mechanisms. In intramembranous ossification, mesenchymal progenitors condense and transdifferentiate directly into osteoblasts, giving rise to the flat bones of the skull. The majority of the skeleton develops through endochondral ossification, in which mesenchymal progenitors give rise to a cartilaginous template that is gradually replaced by bone. The study of these processes necessitates a suitable animal model, a requirement to which the mouse is admirably suited. Their rapid reproductive ability, developmental and physiologic similarity to humans, and easily manipulated genetics all contribute to their widespread use. Outlined here are the most common histological and immunohistochemical techniques utilized in our laboratory for the isolation and analysis of specimens from the developing murine skeleton.


Assuntos
Condrócitos/citologia , Feto , Lâmina de Crescimento/citologia , Animais , Biomarcadores , Proliferação de Células , Condrócitos/metabolismo , Imunofluorescência , Lâmina de Crescimento/metabolismo , Imuno-Histoquímica , Camundongos
13.
Bone ; 144: 115796, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33333241
14.
J Neurosci ; 40(49): 9455-9466, 2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33158965

RESUMO

Gonadal steroids modulate growth hormone (GH) secretion and the pubertal growth spurt via undefined central pathways. GH-releasing hormone (GHRH) neurons express estrogen receptor α (ERα) and androgen receptor (AR), suggesting changing levels of gonadal steroids during puberty directly modulate the somatotropic axis. We generated mice with deletion of ERα in GHRH cells (GHRHΔERα), which displayed reduced body length in both sexes. Timing of puberty onset was similar in both groups, but puberty completion was delayed in GHRHΔERα females. Lack of AR in GHRH cells (GHRHΔAR mice) induced no changes in body length, but puberty completion was also delayed in females. Using a mouse model with two reporter genes, we observed that, while GHRHtdTom neurons minimally colocalize with Kiss1hrGFP in prepubertal mice, ∼30% of GHRH neurons coexpressed both reporter genes in adult females, but not in males. Developmental analysis of Ghrh and Kiss1 expression suggested that a subpopulation of ERα neurons in the arcuate nucleus of female mice undergoes a shift in phenotype, from GHRH to Kiss1, during pubertal transition. Our findings demonstrate that direct actions of gonadal steroids in GHRH neurons modulate growth and puberty and indicate that GHRH/Kiss1 dual-phenotype neurons play a sex-specific role in the crosstalk between the somatotropic and gonadotropic axes during pubertal transition.SIGNIFICANCE STATEMENT Late maturing adolescents usually show delayed growth and bone age. At puberty, gonadal steroids have stimulatory effects on the activation of growth and reproductive axes, but the existence of gonadal steroid-sensitive neuronal crosstalk remains undefined. Moreover, the neural basis for the sex differences observed in the clinical arena is unknown. Lack of ERα in GHRH neurons disrupts growth in both sexes and causes pubertal delay in females. Deletion of androgen receptor in GHRH neurons only delayed female puberty. In adult females, not males, a subset of GHRH neurons shift phenotype to start producing Kiss1. Thus, direct estrogen action in GHRH/Kiss1 dual-phenotype neurons modulates growth and puberty and may orchestrate the sex differences in endocrine function observed during pubertal transition.


Assuntos
Receptor alfa de Estrogênio/fisiologia , Hormônio Liberador de Hormônio do Crescimento/fisiologia , Crescimento/fisiologia , Kisspeptinas/fisiologia , Maturidade Sexual/fisiologia , Transdução de Sinais/fisiologia , Animais , Receptor alfa de Estrogênio/genética , Feminino , Hormônios Esteroides Gonadais/sangue , Hormônios Esteroides Gonadais/fisiologia , Crescimento/genética , Hormônio Liberador de Hormônio do Crescimento/genética , Hipotálamo/metabolismo , Kisspeptinas/genética , Masculino , Camundongos , Camundongos Knockout , Receptores Androgênicos/fisiologia , Caracteres Sexuais , Maturidade Sexual/genética , Transdução de Sinais/genética
15.
Int J Pharm ; 590: 119956, 2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33035608

RESUMO

Sphingosine 1-phosphate (S1P) receptor modulators can influence bone regeneration owing to their positive impact on osteoblast differentiation and neovascularisation. While previous studies have utilised non-specific S1P and fingolimod, this study aims to design and characterise a controlled release vehicle to deliver the specific S1P1 & 5 receptor modulator siponimod and test its effectiveness in rat critical cranial defects. Electrospun scaffolds of poly lactide-co-glycolide (PLGA) were loaded with siponimod at drug:polymer mass ratios of 0.5:100 to 2:100. Where indicated, collagen was co-spun at a collagen:polymer mass ratio of 2:100. Thereafter, scaffolds underwent in vitro physicochemical characterisation and in vivo assessment using a rat cranial defect model. Drug-loaded scaffolds showed controlled release of siponimod, -cytocompatibility with endothelial and osteoblast cells in vitro, and furthermore, showed that released siponimod stimulated osteoblast differentiation and endothelial cell migration. The in vivo cranial defect repair study showed regeneration was occurring in the defect, although there was no significant difference in the extent of mineralisation between scaffold experimental groups. To our knowledge, this is the first study investigating siponimod in bone regeneration. In vitro studies confirm a positive impact on key cells involved in bone regeneration, however, the scaffolds did not result in significant repair of critical cranial defects.


Assuntos
Polímeros , Alicerces Teciduais , Animais , Azetidinas , Compostos de Benzil , Regeneração Óssea , Ratos
16.
Bone ; 140: 115572, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32768687

RESUMO

Hypoxia occurs not only in pathological conditions like cancer and ischemia and in a variety of physiological settings in the adult organism, but also during normal embryonic development. In the inner portion of the fetal growth plate, which is an avascular tissue originating from mesenchymal progenitor cells, chondrocytes experience physiological hypoxia. Hypoxia-Inducible Transcription Factor-1α (HIF1α), a crucial mediator of cellular adaptation to hypoxia, is an essential survival factor for fetal growth plate chondrocytes. This brief review summarizes our current understanding of the survival function of HIF1α during endochondral bone development.


Assuntos
Condrócitos , Lâmina de Crescimento , Desenvolvimento Ósseo , Hipóxia Celular , Humanos , Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia , Consumo de Oxigênio
17.
J Bone Miner Res ; 35(3): 540-549, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31693237

RESUMO

Jansen's metaphyseal chondrodysplasia (JMC) is a rare disease of bone and mineral ion physiology that is caused by activating mutations in PTHR1. Ligand-independent signaling by the mutant receptors in cells of bone and kidney results in abnormal skeletal growth, excessive bone turnover, and chronic hypercalcemia and hyperphosphaturia. Clinical features further include short stature, limb deformities, nephrocalcinosis, and progressive losses in kidney function. There is no effective treatment option available for JMC. In previous cell-based assays, we found that certain N-terminally truncated PTH and PTHrP antagonist peptides function as inverse agonists and thus can reduce the high rates of basal cAMP signaling exhibited by the mutant PTHR1s of JMC in vitro. Here we explored whether one such inverse agonist ligand, [Leu11 ,dTrp12 ,Trp23 ,Tyr36 ]-PTHrP(7-36)NH2 (IA), can be effective in vivo and thus ameliorate the skeletal abnormalities that occur in transgenic mice expressing the PTHR1-H223R allele of JMC in osteoblastic cells via the collagen-1α1 promoter (C1HR mice). We observed that after 2 weeks of twice-daily injection and relative to vehicle controls, the IA analog resulted in significant improvements in key skeletal parameters that characterize the C1HR mice, because it reduced the excess trabecular bone mass, bone marrow fibrosis, and levels of bone turnover markers in blood and urine. The overall findings provide proof-of-concept support for the notion that inverse agonist ligands targeted to the mutant PTHR1 variants of JMC can have efficacy in vivo. Further studies of such PTHR1 ligand analogs could help open paths toward the first treatment option for this debilitating skeletal disorder. © 2019 American Society for Bone and Mineral Research.


Assuntos
Nanismo , Osteocondrodisplasias , Animais , Fator de Crescimento de Fibroblastos 23 , Ligantes , Camundongos , Camundongos Transgênicos , Osteocondrodisplasias/tratamento farmacológico , Osteocondrodisplasias/genética , Hormônio Paratireóideo , Receptor Tipo 1 de Hormônio Paratireóideo/genética
18.
Dev Cell ; 49(5): 748-763.e7, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31105007

RESUMO

Oxygen (O2) is both an indispensable metabolic substrate and a regulatory signal that controls the activity of Hypoxia-Inducible Factor 1α (Hif1a), a mediator of the cellular adaptation to low O2 tension (hypoxia). Hypoxic cells require Hif1a to survive. Additionally, Hif1a is an inhibitor of mitochondrial respiration. Hence, we hypothesized that enhancing mitochondrial respiration is detrimental to the survival of hypoxic cells in vivo. We tested this hypothesis in the fetal growth plate, which is hypoxic. Our findings show that mitochondrial respiration is dispensable for survival of growth plate chondrocytes. Furthermore, its impairment prevents the extreme hypoxia and the massive chondrocyte death observed in growth plates lacking Hif1a. Consequently, augmenting mitochondrial respiration affects the survival of hypoxic chondrocytes by, at least in part, increasing intracellular hypoxia. We thus propose that partial suppression of mitochondrial respiration is crucial during development to protect the tissues that are physiologically hypoxic from lethal intracellular anoxia.


Assuntos
Condrócitos/fisiologia , Desenvolvimento Fetal/fisiologia , Lâmina de Crescimento/fisiologia , Hipóxia/fisiopatologia , Mitocôndrias/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Respiração Celular , Sobrevivência Celular , Condrócitos/citologia , Proteínas de Ligação a DNA/fisiologia , Feminino , Proteínas de Grupo de Alta Mobilidade/fisiologia , Proteínas de Homeodomínio/fisiologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
19.
Bone Res ; 7: 7, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30792937

RESUMO

Osteoblasts, which are the bone-forming cells, operate in a hypoxic environment. The transcription factors hypoxia-inducible factor-1α (HIF1) and HIF2 are key mediators of the cellular response to hypoxia. Both are expressed in osteoblasts. HIF1 is known to be a positive regulator of bone formation. Conversely, the role of HIF2 in the control osteoblast biology is still poorly understood. In this study, we used mouse genetics to demonstrate that HIF2 is an inhibitor of osteoblastogenesis and bone mass accrual. Moreover, we provided evidence that HIF2 impairs osteoblast differentiation at least in part, by upregulating the transcription factor Sox9. Our findings constitute a paradigm shift, as activation of the hypoxia-signaling pathway has traditionally been associated with increased bone formation through HIF1. Inhibiting HIF2 could thus represent a therapeutic approach for the treatment of the low bone mass observed in chronic diseases, osteoporosis, or aging.

20.
Calcif Tissue Int ; 103(6): 638-652, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30094757

RESUMO

Peroxisome proliferator-activated receptor-gamma coactivator (PGC1α) is a transcription coactivator that interacts with a broad range of transcription factors involved in several biological responses. Here, we show that PGC1α plays a role in skeletal homeostasis since aged PGC1α-deficient mice (PGC1α-/-) display impaired bone structure. Micro-CT of the tibial mid-shaft showed a marked decrease of cortical thickness in PGC1α-/- (- 11.9%, p < 0.05) mice compared to wild-type littermate. Trabecular bone was also impaired in knock out mice which displayed lower trabecular thickness (Tb.Th) (- 5.9% vs PGC1α+/+, p < 0.05), whereas trabecular number (Tb.N) was higher than wild-type mice (+ 72% vs PGC1α+/+, p < 0.05), thus resulting in increased (+ 31.7% vs PGC1α+/+, p < 0.05) degree of anisotropy (DA), despite unchanged bone volume fraction (BV/TV). Notably, these impairments of cortical and trabecular bone led to a dramatic ~ 48.4% decrease in bending strength (p < 0.01). These changes in PGC1α-/- mice were paralleled by a significant increase in osteoclast number at the cortical bone surface and in serum level of the bone resorption marker, namely, C-terminal cross-linked telopeptides of type I collagen (CTX-I). We also found that in cortical bone, there was lower expression of mRNA codifying for the key bone-building protein Osteocalcin (Ocn). Interestingly, Collagen I mRNA expression was reduced in mesenchymal stem cells from bone marrow of PGC1α-/-, thus indicating that differentiation of osteoblast lineage is downregulated. Overall, results presented herein suggest that PGC1α may play a key role in bone metabolism.


Assuntos
Osso e Ossos/metabolismo , Osso e Ossos/patologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Animais , Densidade Óssea/fisiologia , Feminino , Masculino , Camundongos , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...