Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Amino Acids ; 42(5): 1591-6, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-21573873

RESUMO

In 2003, human amniotic fluid has been shown to contain stem cells expressing Oct-4, a marker for pluripotency. This finding initiated a rapidly growing and very promising new stem cell research field. Since then, amniotic fluid stem (AFS) cells have been demonstrated to harbour the potential to differentiate into any of the three germ layers and to form three-dimensional aggregates, so-called embryoid bodies, known as the principal step in the differentiation of pluripotent stem cells. Marker selection and minimal dilution approaches allow the establishment of monoclonal AFS cell lineages with high proliferation potential. AFS cells have a lower risk for tumour development and do not raise the ethical issues of embryonic stem cells. Compared to induced pluripotent stem cells, AFS cells do not need exogenic treatment to induce pluripotency, are chromosomal stable and do not harbour the epigenetic memory and accumulated somatic mutations of specific differentiated source cells. Compared to adult stem cells, AFS can be grown in larger quantities and show higher differentiation potential. Accordingly, in the recent past, AFS became increasingly accepted as an optimal tool for basic research and probably also for specific cell-based therapies. Here, we review the current knowledge on the neurogenic differentiation potential of AFS cells.


Assuntos
Líquido Amniótico/citologia , Diferenciação Celular , Células-Tronco Embrionárias/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Neurônios/citologia , Linhagem da Célula , Feminino , Humanos , Fator 3 de Transcrição de Octâmero/metabolismo , Gravidez
2.
Amino Acids ; 42(6): 2251-6, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21710263

RESUMO

The protein kinase p70 S6K1 is regulated in response to cytokines, nutrients and growth factors, and plays an important role in the development of a variety of human diseases. Mammalian target of rapamycin (mTOR) is known to phosphorylate and thereby activate p70 S6K1. p70 S6K1 phosphorylates different cytoplasmic and nuclear substrates involved in the regulation of protein synthesis, cell cycle, cell growth and survival. Recently, we have shown that mTOR-mediated phosphorylation of p70 S6K1 at T389 also regulates its nucleocytoplasmic localization. Since this phosphorylation is associated with its kinase activity the question whether p70 S6K1 phosphorylation or kinase activity is essential for its proper localization remained elusive. Recently, the chemical compound PF-4708671 has been demonstrated to block p70 S6K1 kinase activity while inducing its phosphorylation at T389. This potential of PF-4708671 to separate p70 S6K1 activity from its T389 phosphorylation allowed us to demonstrate that the proper nucleocytoplasmic localization of this kinase depends on its mTOR-mediated phosphorylation but not on its kinase activity. These findings provide important insights into the regulation of p70 S6K1 and allow a more detailed understanding of subcellular enzyme localization processes.


Assuntos
Núcleo Celular/metabolismo , Fibroblastos/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Núcleo Celular/efeitos dos fármacos , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Humanos , Imidazóis/farmacologia , Fosforilação , Piperazinas/farmacologia , Cultura Primária de Células , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases S6 Ribossômicas 70-kDa/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...